’Trim Size: 170mm x 244mm Single Column Weyns574941 ffirs.tex V2-06/26/2020 7:20pm Page iii

An Introduction to Self-Adaptive Systems

A Contemporary Software Engineering Perspective

Danny Weyns

Katholieke Universiteit Leuven, Belgium
Linnaeus University Vaxjo, Sweden

wAl jJA-
WILEY IEEE PRESS

1.1
1.2
1.3
1.4
14.1
1.4.2
1.4.3
1.4.4
1.4.5
1.5
1.6
1.7
1.8

2.1
2.2
2.3
24
2.5

31
3.2
3.3
3.4

Contents

Foreword xi
Acknowledgments xv
Acronyms xvii
Introduction xix

Basic Principles of Self-Adaptation and Conceptual Model 1
Principles of Self-Adaptation 2

Other Adaptation Approaches 4

Scope of Self-Adaptation 5

Conceptual Model of a Self-Adaptive System 5
Environment 5

Managed System 7

Adaptation Goals 8

Feedback Loop 8

Conceptual Model Applied 10

A Note on Model Abstractions 11

Summary 11

Exercises 12

Bibliographic Notes 14

Engineering Self-Adaptive Systems: A Short Tour in Seven Waves 17
Overview of the Waves 18

Contributions Enabled by the Waves 20

Waves Over Time with Selected Work 20

Summary 22

Bibliographic Notes 23

Internet-of-Things Application 25

Technical Description 25

Uncertainties 28

Quality Requirements and Adaptation Problem 29
Summary 29

vi

Contents

3.5
3.6

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.5
4.5.1
4.5.2
453
4.6
4.7
4.8

5.1

5.2

5.2.1
5.2.2
5.2.3
524
5.2.5

53
5.3.1
53.2
5.4
54.1
54.2
54.3
5.5
5.6
5.7

Exercises 30
Bibliographic Notes 31

Wave |: Automating Tasks 33

Autonomic Computing 34

Utility Functions 35

Essential Maintenance Tasks for Automation 37
Self-Optimization 37

Self-Healing 38

Self-Protection 40

Self-Configuration 42

Primary Functions of Self-Adaptation 43
Knowledge 44

Monitor 46

Analyzer 47

Planner 49

Executor 51

Software Evolution and Self-Adaptation 52
Software Evolution Management 53
Self-Adaptation Management 54
Integrating Software Evolution and Self-Adaptation 55
Summary 56

Exercises 59

Bibliographic Notes 60

Wave lI: Architecture-based Adaptation 63

Rationale for an Architectural Perspective 64

Three-Layer Model for Self-Adaptive Systems 66

Component Control 67

Change Management 67

Goal Management 68

Three-Layer Model Applied to DeltaloT 68

Mapping Between the Three-Layer Model and the Conceptual Model for
Self-Adaptation 70

Reasoning about Adaptation using an Architectural Model 70
Runtime Architecture of Architecture-based Adaptation 71
Architecture-based Adaptation of the Web-based Client-Server System 73
Comprehensive Reference Model for Self-Adaptation 75

Reflection Perspective on Self-Adaptation 76

MAPE-K Perspective on Self-Adaptation 78

Distribution Perspective on Self-Adaptation 79

Summary 83

Exercises 84

Bibliographic Notes 87

6.1

6.2

6.3

6.4
6.4.1
6.4.2
6.4.3
6.4.3.1
6.4.3.2
6.4.4
6.5
6.5.1
6.5.2
6.5.2.1
6.5.2.2
6.5.3
6.6

6.7

6.8

7.1
7.1.1
7.1.1.1
7.1.1.2
7.1.2
7.1.2.1
7.1.2.2
7.1.2.3
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
7.4

7.5

7.6

8.1
8.2
8.2.1

Wave lll: Runtime Models 89

What is a Runtime Model? 90

Causality and Weak Causality 90
Motivations for Runtime Models 91
Dimensions of Runtime Models 92
Structural versus Behavioral 93

Declarative versus Procedural 94

Functional versus Qualitative 95

Functional Models 95

Quality Models 95

Formal versus Informal 98

Principal Strategies for Using Runtime Models 101
MAPE Components Share K Models 101
MAPE Components Exchange K Models 103
Runtime Models 103

Components of the Managing System 104
MAPE Models Share K Models 105
Summary 108

Exercises 109

Bibliographic Notes 114

Wave IV: Requirements-driven Adaptation 115

Relaxing Requirements for Self-Adaptation 116
Specification Language to Relax Requirements 116
Language Operators for Handling Uncertainty 116
Semantics of Language Primitives 118

Operationalization of Relaxed Requirements 118
Handing Uncertainty 118

Requirements Reflection and Mitigation Mechanisms 119
A Note on the Realization of Requirements Reflection 121
Meta-Requirements for Self-Adaptation 122

Awareness Requirements 123

Evolution Requirements 124

Operationalization of Meta-requirements 126

Functional Requirements of Feedback Loops 127

Design and Verify Feedback Loop Model 128

Deploy and Execute Verified Feedback Loop Model 130
Summary 131

Exercises 132

Bibliographic Notes 134

Wave V: Guarantees Under Uncertainties 137
Uncertainties in Self-Adaptive Systems 139
Taming Uncertainty with Formal Techniques 141
Analysis of Adaptation Options 141

Contents

vii

viii

Contents

8.2.2
8.3
8.4
8.5
8.6
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.8
8.9
8.10

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2
9.4.3
9.5
9.6
9.7
9.8

10
10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2

Selection of Best Adaptation Option 143

Exhaustive Verification to Provide Guarantees for Adaptation Goals 144
Statistical Verification to Provide Guarantees for Adaptation Goals 149
Proactive Decision-Making using Probabilistic Model Checking 154

A Note on Verification and Validation 160

Integrated Process to Tame Uncertainty 160

Stage I: Implement and Verify the Managing System 161

Stage II: Deploy the Managing System 162

Stage III: Verify Adaptation Options, Decide, and Adapt 163

Stage IV: Evolve Adaptation Goals and Managing System 163
Summary 164

Exercises 165

Bibliographic Notes 168

Wave VI: Control-based Software Adaptation 171
A Brief Introduction to Control Theory 173
Controller Design 174

Control Properties 175

SISO and MIMO Control Systems 176

Adaptive Control 177

Automatic Construction of SISO Controllers 177
Phases of Controller Construction and Operation 178
Model Updates 179

Formal Guarantees 181

Example: Geo-Localization Service 183
Automatic Construction of MIMO Controllers 184
Phases of Controller Construction and Operation 184
Formal Guarantees 186

Example: Unmanned Underwater Vehicle 186
Model Predictive Control 189

Controller Construction and Operation 189
Formal Assessment 191

Example: Video Compression 192

A Note on Control Guarantees 194

Summary 194

Exercises 196

Bibliographic Notes 199

Wave VII: Learning from Experience 201

Keeping Runtime Models Up-to-Date Using Learning 203
Runtime Quality Model 204

Overview of Bayesian Approach 205

Reducing Large Adaptation Spaces Using Learning 208
Ilustration of the Problem 208

Overview of the Learning Approach 210

10.3
10.3.1
10.3.1.1
10.3.1.2
10.3.1.3
10.4
10.5
10.6

11

11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7
11.2
11.2.1
11.2.1.1
11.2.1.2
11.2.1.3
11.2.1.4
11.2.1.5
11.2.1.6
11.2.1.7
11.2.2
11.2.2.1
11.2.2.2
11.2.2.3
11.2.2.4
11.3

Learning and Improving Scaling Rules of a Cloud Infrastructure 213
Overview of the Fuzzy Learning Approach 214

Fuzzy Logic Controller 214

Fuzzy Q-learning 217

Experiments 221

Summary 223

Exercises 225

Bibliographic Notes 226

Maturity of the Field and Open Challenges 227
Analysis of the Maturity of the Field 227
Basic Research 227

Concept Formulation 228

Development and Extension 229

Internal Enhancement and Exploration 229
External Enhancement and Exploration 230
Popularization 230

Conclusion 231

Open Challenges 231

Challenges Within the Current Waves 231
Evidence for the Value of Self-Adaptation 231
Decentralized Settings 232

Domain-Specific Modeling Languages 232
Changing Goals at Runtime 233

Complex Types of Uncertainties 233

Control Properties versus Quality Properties 234
Search-based Techniques 234

Challenges Beyond the Current Waves 235
Exploiting Artificial Intelligence 235

Dealing with Unanticipated Change 236
Trust and Humans in the Loop 236

Ethics for Self-Adaptive Systems 237
Epilogue 239

Bibliography 241
Index 263

Contents

ix

1

Basic Principles of Self-Adaptation and Conceptual Model

Modern software-intensive systems! are expected to operate under uncertain conditions,
without interruption. Possible causes of uncertainties include changes in the operational
environment, dynamics in the availability of resources, and variations of user goals. Tradi-
tionally, it is the task of system operators to deal with such uncertainties. However, such
management tasks can be complex, error-prone, and expensive. The aim of self-adaptation
is to let the system collect additional data about the uncertainties during operation in order
to manage itself based on high-level goals. The system uses the additional data to resolve
uncertainties and based on its goals re-configures or adjusts itself to satisfy the changing
conditions.

Consider as an example a simple service-based health assistance system as shown in
Figure 1.1. The system takes samples of vital parameters of patients; it also enables patients
to invoke a panic button in case of an emergency. The parameters are analyzed by a medical
service that may invoke additional services to take actions when needed; for instance, a drug
service may need to notify a local pharmacy to deliver new medication to a patient. Each ser-
vice type can be realized by one of multiple service instances provided by third-party service
providers. These service instances are characterized by different quality properties, such as
failure rate and cost. Typical examples of uncertainties in this system are the patterns that
particular paths in the workflow are invoked by, which are based on the health conditions
of the users and their behavior. Other uncertainties are the available service instances, their
actual failure rates and the costs to use them. These parameters may change over time, for
instance due to the changing workloads or unexpected network failures.

Anticipating such uncertainties during system development, or letting system operators
deal with them during operation, is often difficult, inefficient, or too costly. Moreover, since
many software-intensive systems today need to be operational 24/7, the uncertainties nec-
essarily need to be resolved at runtime when the missing knowledge becomes available.
Self-adaptation is about how a system can mitigate such uncertainties autonomously or
with minimum human intervention.

The basic idea of self-adaptation is to let the system collect new data (that was miss-
ing before deployment) during operation when it becomes available. The system uses the

1 A software-intensive system is any system where software dominates to a large extent the design,
construction, deployment, operation, and evolution of the system. Some examples include mobile
embedded systems, unmanned vehicles, web service applications, wireless ad-hoc systems,
telecommunications, and Cloud systems.

An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspective,
First Edition. Danny Weyns.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.

2

1 Basic Principles of Self-Adaptation and Conceptual Model

8]
%] change drug Z]
(_ _>O
Medical ~ Drug
Service chaﬁge dose Service
(=0
execute
Workflow
—O<-) Engine
2]
take trigger alarm Al
| sample o arm
Y (=0 Service
Service
Workflow
L - | Environment
' Patients (service providers, resources)
' elements

Figure 1.1 Architecture of a simple service-based health assistance system

additional data to resolve uncertainties, to reason about itself, and based on its goals to
reconfigure or adjust itself to maintain its quality requirements or, if necessary, to degrade

gracefully.

In this chapter, we explain what a self-adaptive system is. We define two basic principles
that determine the essential characteristics of self-adaptation. These principles allow us
to define the boundaries of what we mean by a self-adaptive system in this book, and to
contrast self-adaptation with other approaches that deal with changing conditions during
operation. From the two principles, we derive a conceptual model of a self-adaptive system
that defines the basic elements of such a system. The conceptual model provides a basic

vocabulary for the remainder of this book.

LEARNING OUTCOMES

e To explain the basic principles of self-adaptation.

1.1 Principles of Self-Adaptation

There is no general agreement on a definition of the notion of self-adaptation. However,

To understand how self-adaptation relates to other adaptation approaches.
To describe the conceptual model of a self-adaptive system.
To explain and illustrate the basic concepts of a self-adaptive system.

To apply the conceptual model to a concrete self-adaptive application.

there are two common interpretations of what constitutes a self-adaptive system.

1.1 Principles of Self-Adaptation

The first interpretation considers a self-adaptive system as a system that is able to adjust
its behavior in response to the perception of changes in the environment and the system
itself. The self prefix indicates that the system decides autonomously (i.e. without or with
minimal human intervention) how to adapt to accommodate changes in its context and
environment. Furthermore, a prevalent aspect of this first interpretation is the presence of
uncertainty in the environment or the domain in which the software is deployed. To deal
with these uncertainties, the self-adaptive system performs tasks that are traditionally done
by operators. Hence, the first interpretation takes the stance of the external observer and
looks at a self-adaptive system as a black box. Self-adaptation is considered as an observable
property of a system that enables it to handle changes in external conditions, availability of
resources, workloads, demands, and failures and threats.

The second interpretation contrasts traditional “internal” mechanisms that enable a sys-
tem to deal with unexpected or unwanted events, such as exceptions in programming lan-
guages and fault-tolerant protocols, with “external” mechanisms that are realized by means
of a closed feedback loop that monitors and adapts the system behavior at runtime. This
interpretation emphasizes a “disciplined split” between two distinct parts of a self-adaptive
system: one part that deals with the domain concerns and another part that deals with the
adaptation concerns. Domain concerns relate to the goals of the users for which the sys-
tem is built; adaptation concerns relate to the system itself, i.e. the way the system realizes
the user goals under changing conditions. The second interpretation takes the stance of the
engineer of the system and looks at self-adaptation from the point of view how the system
is conceived.

Hence, we introduce two complementary basic principles that determine what a
self-adaptive system is:

1. External principle: A self-adaptive system is a system that can handle changes and
uncertainties in its environment, the system itself, and its goals autonomously (i.e.
without or with minimal required human intervention).

2. Internal principle: A self-adaptive system comprises two distinct parts: the first part
interacts with the environment and is responsible for the domain concerns - i.e.
the concerns of users for which the system is built; the second part consists of a
feedback loop that interacts with the first part (and monitors its environment) and is
responsible for the adaptation concerns - i.e. concerns about the domain concerns.

Let us illustrate how the two principles of self-adaptation apply to the service-based
health assistance system. Self-adaptation would enable the system to deal with dynamics
in the types of services that are invoked by the system as well as variations in the failure
rates and costs of particular service instances. Such uncertainties may be hard to anticipate
before the system is deployed (external principle). To that end, the service-based system
could be enhanced with a feedback loop. This feedback loop tracks the paths of services
that are invoked in the workflow, as well as the failure rates of service instances and
the costs of invoking service instances that are provided by the service providers. Taking
this data into account, the feedback loop adapts the selection of service instances by the
workflow engine such that a set of adaptation concerns is achieved. For instance, services

3

4

1 Basic Principles of Self-Adaptation and Conceptual Model

are selected that keep the average failure rate below a required threshold, while the cost of
using the health assistance system is minimized (internal principle).

1.2 Other Adaptation Approaches

The ability of a software-intensive system to adapt at runtime in order to achieve its goals
under changing conditions is not the exclusivity of self-adaptation, but can be realized in
other ways.

The field of autonomous systems has a long tradition of studying systems that can change
their behavior during operation in response to events that may not have been anticipated
fully. A central idea of autonomous systems is to mimic human (or animal) behavior, which
hasbeen a source of inspiration for a very long time. The area of cybernetics founded by Nor-
bert Wiener at MIT in the mid twentieth century led to the development of various types
of machines that exposed seemingly “intelligent” behavior similar to biological systems.
Wiener’s work contributed to the foundations of various fields, including feedback control,
automation, and robotics. The interest in autonomous systems has expanded significantly
in recent years, with high-profile application domains such as autonomous vehicles. While
these applications have extreme potential, their successes so far have also been accompa-
nied by some dramatic failures, such as the accidents caused by first generation autonomous
cars. The consequences of such failures demonstrate the real technical difficulties associ-
ated with realizing truly autonomous systems.

An important sub-field of autonomous systems is multi-agent systems, which studies
the coordination of autonomous behavior of agents to solve problems that go beyond the
capabilities of single agents. This study involves architectures of autonomous agents, com-
munication and coordination mechanisms, and supporting infrastructure. An important
aspect is the representation of knowledge and its use to coordinate autonomous behavior
of agents. Self-organizing systems emphasize decentralized control. In a self-organizing sys-
tem, simple reactive agents apply local rules to adapt their interactions with other agents in
response to changing conditions in order to cooperatively realize the system goals. In such
systems, the global macroscopic behavior emerges from the local interactions of the agents.
However, emergent behavior can also appear as an unwanted side effect, for example in
the form of oscillations. Designing decentralized systems that expose the required global
behavior while avoiding unwanted emergent phenomena remains a major challenge.

Context-awareness is another traditional field that is related to self-adaptation.
Context-awareness puts the emphasis on handling relevant elements in the physical envi-
ronment as first-class citizens in system design and operation. Context-aware computing
systems are concerned with the acquisition of context (e.g. through sensors to perceive a
situation), the representation and understanding of context, and the steering of behavior
based on the recognized context (e.g. triggering actions based on the actual context).
Context-aware systems typically have a layered architecture, where a context manager
or dedicated middleware is responsible for sensing and dealing with context changes.
Self-aware computing systems contrast with context-aware computing systems in the
sense that these systems capture and learn knowledge not only about the environment
but also about themselves. This knowledge is encoded in the form of runtime models,

1.4 Conceptual Model of a Self-Adaptive System

which a self-aware system uses to reason at runtime, enabling it to act in accordance with
higher-level goals.

1.3 Scope of Self-Adaptation

Autonomous systems, multi-agent systems, self-organizing systems, and context-aware
systems are families of systems that apply classical approaches to deal with change at
runtime. However, these approaches do not align with the combined basic principles of
self-adaptation. In particular, none of these approaches comply with the second principle,
which makes an explicit distinction between a part of the system that handles domain
concerns and a part that handles adaptation concerns. However, the second principle
of self-adaptation can be applied to each of these approaches - i.e. these systems can be
enhanced with a feedback loop that deals with a set of adaptation concerns. This book is
concerned with self-adaptation as a property of a computing system that is compliant with
the two basic principles of self-adaptation.

Furthermore, self-adaptation can be applied at different levels of the software stack of
computing systems, from the underlying resources and low-level computing infrastructure
to middleware services and application software. The challenges of self-adaptation at these
different levels are different. For instance, the space of adaptation options of higher-level
software entities is often multi-dimensional, and software qualities and adaptation goals
usually have a complex interplay. These characteristics are less applicable to the adapta-
tion of lower-level resources, where there is often a more straightforward relation between
adaptation actions and software qualities. In this book, we consider self-adaptation applied
at different levels of the software stack of computing systems, from virtualized resources up
to application software.

1.4 Conceptual Model of a Self-Adaptive System

Starting from the two basic principles of self-adaptation, we define a conceptual model for
self-adaptive systems that describes the basic elements of such systems and the relationship
between them. The basic elements are intentionally kept abstract and general, but they are
compliant with the basic principles of self-adaptation. The conceptual model introduces
a basic vocabulary for the field of self-adaptation that we will use throughout this book.
Figure 1.2 shows the conceptual model of a self-adaptive system.

The conceptual model comprises four basic elements: environment, managed system,
feedback loop, and adaptation goals. The feedback loop together with the adaptation goals
form the managing system. We discuss the elements one by one and illustrate them for the
service-based health assistance application.

1.4.1 Environment

The environment refers to the part of the external world with which a self-adaptive system
interacts and in which the effects of the system will be observed and evaluated. The environ-
ment can include users as well as physical and virtual elements. The distinction between

5

6 | 1 Basic Principles of Self-Adaptation and Conceptual Model

® Stakeholders

| | | g]
i Self-Adaptive System i E
: : : 8]
éé evolve evolve iﬁ E‘/} support
3]
Adaptat read 2]
aptation O< -2
Goals D_
Feedback Loop
Managing System f]\ fl\
PToToToToooooooooooooos ’ 8? sense %S adapt
| 8]
i Managed System
L_____-———>§/) sense é effect
Environment
El - (%)
o> g [
Component Interface Actor Group of elements

Figure 1.2 Conceptual model of a self-adaptive system

the environment and the self-adaptive system is made based on the extent of control. The
environment can be sensed and effected through sensors and effectors, respectively. How-
ever, as the environment is not under the control of the software engineer of the system,
there may be uncertainty in terms of what is sensed by the sensors or what the outcomes
will be of the effectors.

1.4 Conceptual Model of a Self-Adaptive System

Applied to the service-based health assistance system example, the environment includes
the patients that make use of the system; the application devices with the sensors that
measure vital parameters of patients and the panic buttons; the service providers with the
services instances they offer; and the network connections used in the system, which may
all affect the quality properties of the system.

1.4.2 Managed System

The managed system comprises the application software that realizes the functions of the
system to its users. Hence, the concerns of the managed system are concerns over the
domain, i.e. the environment of the system. Different terminology has been used to refer to
the managed system, such as managed element, system layer, core function, base-level sys-
tem, and controllable plant. In this book, we systematically use the term managed system. To
realize its functions to the users, the managed system senses and effects the environment.
To support adaptations, the managed system needs to be equipped with sensors to enable
monitoring and effectors (also called actuators) to execute adaptation actions. Safely execut-
ing adaptations requires that actions applied to the managed systems do not interfere with
the regular system activity. In general, they may affect ongoing activities of the system - for
instance, scaling a Cloud system might require bringing down a container and restarting it.

A classic approach to realizing safe adaptations is to apply adaptation actions only when a
system (or the parts that are subject to adaptation) is in a quiescent state. A quiescent state is
a state where no activity is going on in the managed system or the parts of it that are subject
to adaptation so that the system can be safely updated. Support for quiescence requires an
infrastructure to deal with messages that are invoked during adaptations; this infrastructure
also needs to handle the state of the adapted system or the relevant parts of it to ensure its
consistency before and after adaptation. Handling such messages and ensuring consistency
of state during adaptations are in general difficult problems. However, numerous infrastruc-
tures have been developed to support safe adaptations for particular settings. A well-known
example is the OSGi (Open Service Gateway Initiative) Java framework, which supports
installing, starting, stopping, and updating arbitrary components (bundles in OSGi termi-
nology) dynamically.

The managed system of the service-based health assistance system consists of a service
workflow that realizes the system functions. In particular, a medical service receives mes-
sages from patients with values of their vital parameters. The service analyzes the data and
either invokes a drug service to notify a local pharmacy to deliver new medication to the
patient or change the dose of medication, or it invokes an alarm service in case of an emer-
gency to notify medical staff to visit the patient. The alarm service can also be invoked
directly by a patient via a panic button. To support adaptation, the workflow infrastructure
offers sensors to track the relevant aspects of the system and the characteristics of service
instances (failure rate and cost). The infrastructure allows the selection and use of con-
crete instances of the different types of services that are required by the system. Finally, the
workflow infrastructure needs to provide support to change service instances in a consis-
tent manner by ensuring that a service is only removed and replaced when it is no longer
involved in any ongoing service invocation of the health assistance system.

7

8

1 Basic Principles of Self-Adaptation and Conceptual Model

1.4.3 Adaptation Goals

Adaptation goals represent concerns of the managing system over the managed system;
adaptation goals relate to quality properties of the managed system. In general, four princi-
pal types of high-level adaptation goals can be distinguished: self-configuration (i.e. systems
that configure themselves automatically), self-optimization (systems that continually seek
ways to improve their performance or reduce their cost), self-healing (systems that detect,
diagnose, and repair problems resulting from bugs or failures), and self-protection (systems
that defend themselves from malicious attacks or cascading failures).

Since the system uses the adaptation goals to reason about itself during operation, the
goals need to be represented in a machine-readable format. Adaptation goals are often
expressed in terms of the uncertainty they have to deal with. Example approaches are the
specification of quality of service goals using probabilistic temporal logics that allow for
probabilistic quantification of properties, the specification of fuzzy goals whose satisfaction
isrepresented through fuzzy constraints, and a declarative specification of goals (in contrast
to enumeration) allowing the introduction of flexibility in the specification of goals. Adapta-
tion goals can be subject to change themselves, which is represented in Figure 1.2 by means
of the evolve interface. Adding new goals or removing goals during operation will require
updates of the managing system, and often also require updates of probes and effectors.

In the health assistance application, the system dynamically selects service instances
under changing conditions to keep the failure rate over a given period below a required
threshold (self-healing goal), while the cost is minimized (optimization goal). Stakeholders
may change the threshold value for the failure rate during operation, which may require
just a simple update of the corresponding threshold value. On the other hand, adding a
new adaptation goal, for instance to keep the average response time of invocations of the
assistance service below a required threshold, would be more invasive and would require
an evolution of the adaptation goals and the managing system.

1.4.4 Feedback Loop

The adaptation of the managed system is realized by the managing system. Different terms
are used in the literature for the concept of managing system, such as autonomic manager,
adaptation engine, reflective system, and controller. Conceptually, the managing system
realizes a feedback loop that manages the managed system. The feedback loop comprises
the adaptation logic that deals with one or more adaptation goals. To realize the adaptation
goals, the feedback loop monitors the environment and the managed system and adapts the
latter when necessary to realize the adaptation goals. With a reactive policy, the feedback
loop responds to a violation of the adaptation goals by adapting the managed system to a
new configuration that complies with the adaptation goals. With a proactive policy, the feed-
back loop tracks the behavior of the managed system and adapts the system to anticipate a
possible violation of the adaptation goals.

An important requirement of a managing system is ensuring that fail-safe operating
modes are always satisfied. When such an operating mode is detected, the managing
system can switch to a fall-back or degraded mode during operation. An example of an
operating mode that may require the managing system to switch to a fail-safe configuration

1.4 Conceptual Model of a Self-Adaptive System

is the inability to find a new configuration to adapt the managed system to that achieves
the adaptation goals within the time window that is available to make an adaptation
decision. Note that instead of falling back to a fail-safe configuration in the event that the
goals cannot be achieved, the managing system may also offer a stakeholder the possibility
to decide on the action to take.

The managing system may consist of a single level that conceptually consists of one feed-
back loop with a set of adaptation goals, as shown in Figure 1.2. However, the managing
system may also have a layered structure, where each layer conceptually consists of a feed-
back loop with its own goals. In this case, each layer manages the layer beneath - i.e. layer n
manages layer n-1, and layer 1 manages the managed system. In practice, most self-adaptive
systems have a managing system that consists of just one layer. In systems where additional
layers are applied, the number of additional layers is usually limited to one or two. For
instance, a managing system may have two layers: the bottom layer may react quickly to
changes and adapts the managed system when needed, while the top layer may reason over
long term strategies and adapt the underlying layer accordingly.

The managing system can operate completely automatically without intervention of
stakeholders, or stakeholders may be involved in support for certain functions realized by
the feedback loop; this is shown in Figure 1.2 by means of the generic support interface.
We already gave an example above where a stakeholder could support the system with
handling a fail-safe situation. Another example is a managing system that detects a possible
threat to the system. Before activating a possible reconfiguration to mitigate the threat, the
managing system may check with a stakeholder whether the adaptation should be applied
or not.

The managing system can be subject to change itself, which is represented in Figure 1.2
with the evolve interface. On-the-fly changes of the managing systems are important for two
main reasons: (i) to update a feedback loop to resolve a problem or a bug (e.g. add or replace
some functionality), and (ii) to support changing adaptation goals, i.e. change or remove an
existing goal or add a new goal. The need for evolving the feedback loop model is triggered
by stakeholders either based on observations obtained from the executing system or because
stakeholders want to change the adaptation goals.

The managing system of the service-based health assistance system comprises a feedback
loop thatis added to the service workflow. The task of the feedback loop is to ensure that the
adaptation goals are realized. To that end, the feedback loop monitors the system behavior
and the quality properties of service instances, and tracks that the system is not violating
the adaptation goals. For a reactive policy, the feedback loop will select alternative service
instances that ensure the adaptation goals are met in the event that goal violations are
detected. If no configuration can be found that complies with the adaptation goals within
a given time (fail-safe operating mode), the managing system may involve a stakeholder to
decide on the adaptation action to take. The feedback loop that adapts the service instances
to ensure that the adaptation goals are realized may be extended with an extra level that
adapts the underlying method that makes the adaptation decisions. For instance, this extra
level may track the quality properties of service instances over time and identify patterns.
The second layer can then use this knowledge to instruct the underlying feedback loop to
give preference to selecting particular service instances or to avoid the selection of certain
instances. For instance, services that expose a high level of failures during particular periods

9

10

1 Basic Principles of Self-Adaptation and Conceptual Model

of the day may temporarily be excluded from selection to avoid harming the trustworthi-
ness of the system. As we explained above, when a new adaptation goal is added to the
system, in order to keep the average latency of invocations of the assistance service below
arequired threshold, the managing system will need to be updated. For instance, the man-
aging system will need to be updated such that it can make adaptation decisions based on
three adaptation goals instead of two.

1.4.5 Conceptual Model Applied

Figure 1.3 summarizes how the the conceptual model maps to the self-adaptive
service-based health assistance system. The operator in this particular instance is
responsible for supporting the self-adaptive system with handling fail-safe conditions
(through the support interface). In this example, we do not consider the evolution of
adaptation goals and the managing system.

handle fail-safe o

(support) ?<__)_ n‘ Operator

Failure Rate & Cost 2 read g
(Adaptation Goals) —O<--)—

Feedback Loop

(Managing System)

b |
1
FoTTTTTToo il o |
| ! \:/
i é sense (P adapt
| g]
1
! Health Assistance System (Managed System)
1
. 2] g]
i 2] change drug g
(-2
i Medical 20 Drug
! Service change dose Service
! (->0 .
execute
i xeed Workflow
! 7] —O< D) Engine
1
i 9.3 take trigger alarm Alarm
| (. sample (>0 Service
| Service
| Workflow
SSSS =) Environment
nl Patients (Service Providers, Resources)

. Group of
KEY - Component —(O<-)- Interface Actor P
ﬂ P } ’ I:I elements

Figure 1.3 Conceptual model applied to a self-adaptive service-based health assistance system

1.6 Summary

1.5 A Note on Model Abstractions

It is important to note that the conceptual model for self-adaptive systems abstracts away
from distribution - i.e. the deployment of the software to hardware that is connected via a
network. Whereas a distributed self-adaptive system consists of multiple software compo-
nents that are deployed on multiple nodes connected via some network, from a conceptual
point of view such system can be represented as one managed system (that deals with the
domain concerns) and one managing system (that deals with adaptation concerns of the
managed system). The conceptual model also abstracts away from how adaptation decisions
in a self-adaptive system are made and potentially coordinated among different compo-
nents. In particular, the conceptual model is invariant to self-adaptive systems where the
adaptation functions are made by a single centralized entity or by multiple coordinating
entities in a decentralized way. In a concrete setting, the composition of the components
of a self-adaptive system, the concrete deployment of these components to hardware ele-
ments, and the degree of decentralization of the decision making of adaptation will have a
deep impact on how such self-adaptive systems are engineered.

1.6 Summary

Dealing with uncertainties in the operating conditions of a software-intensive system that
are difficult to predict is an important challenge for software engineers. Self-adaptation is
about how a system can mitigate such uncertainties.

There are two common interpretations of what constitutes a self-adaptive system. The
first interpretation considers a self-adaptive system as a system that is able to adjust its
behavior in response to changes in the environment or the system itself. The second inter-
pretation contrasts traditional internal mechanisms that enable a system to deal with unex-
pected or unwanted events with external mechanisms that are realized by means of feed-
back loops.

These interpretations lead to two complementary basic principles that determine what is
a self-adaptive system. The external principle states that a self-adaptive system can handle
change and uncertainties autonomously (or with minimal human intervention). The inter-
nal principle states that a self-adaptive system consists of two distinct parts: one part that
interacts with the environment and deals with the domain concerns and a second part that
interacts with the first part and deals with the adaptation concerns.

Other traditional approaches to deal with change at runtime include autonomous
systems, multi-agent systems, self-organizing systems, and context-aware systems. These
approaches differ from self-adaptation, in particular with respect to the second basic
principle. However, the second principle can be applied to these approaches through
adding a managing system realizing self-adaptation.

Conceptually, a self-adaptive system consists of four basic elements: environment, man-
aged system, adaptation goals, and feedback loop. The environment is external to the sys-
tem; it defines the domain concerns and is not under control of the software engineer. The

11

12

1 Basic Principles of Self-Adaptation and Conceptual Model

managed system comprises the application software that realizes the domain concerns for
the users. To support adaptation, the managed system needs to provide probes and effectors
and support safe adaptations. The adaptation goals represent concerns over the managed
system, which refer to qualities of the system. The feedback loop realizes the adaptation
goals by monitoring and adapting the managed system. The feedback loop with the adap-
tation goals form the managing system. The managing system can be subject to on-the-fly
evolution, either to update some functionality of the adaptation logic or to change the adap-
tation goals.

1.7 Exercises

11

1.2

Conceptual model pipe and filter system: level H

Consider a pipe and filter system that has to perform a series of tasks for a user.
Different instances of the filters are offered by third parties. These filter instances
provide different quality of service in terms of processing time and service cost that
may change over time. Explain how you would make this a self-adaptive system that
ensures that the average throughput of tasks remains under a given threshold while
the cost is minimized. Draw the conceptual model that shows your solution to this
adaptation problem.

Conceptual model Znn.com news service: level H

Setting. Consider Znn.com, a news service that serves multimedia news content
to customers. Architecturally, Znn.com is set up as a Web-based client-server
system that serves clients from a pool of servers. Customers of Znn.com expect a
reasonable response time, while the system owner wants to keep the cost of the
server pool within a certain operating budget. In normal operating circumstances,
the appropriate trade-offs can be made at design-time. However, from time to time,
due to highly popular events, Znn.com experiences spikes in news requests that are
not within the originally designed parameters. This means that the clients will not
receive content in a timely manner. To the clients, the site will appear to be down,
so they may not use the service anymore, resulting in lost revenue. The challenge
for self-adaptation is to enable the system to still provide content at peak times.
There are several ways to deal with this, such as serving reduced content, increasing
the number of servers serving content, and choosing to prioritize serving paying
customers.

Task. Enhance Znn.com with self-adaptation to deal with the challenge of the news
service. Identify the basic concepts of the self-adaptive system (environment, man-
aged system, feedback loop, adaptation goals) and describe the responsibilities of each
element. Draw the conceptual model that shows your solution to this adaptation
problem.

Additional material. See the Znn artifact website [53].

1.3 Conceptual model video encoder: level H

1.4

1.7 Exercises

Setting. Consider a video encoder that takes a stream of video frames (for instance
from an mp4 video) and compresses the frames such that the video stream fits a given
communication channel. While compressing frames, the encoder should maintain a
required quality of the manipulated frames compared to the original frames, which
is expressed as a similarity index. To achieve these conflicting goals, the encoder can
change three parameters for each frame: the quality of the encoding and the setting
of a sharpening filter and the setting of a noise reduction filter that are both applied
to the image. The quality parameter that relates to a compression factor for the image
has a value between 1 and 100, where 100 preserves all frame details and 1 pro-
duces the highest compression. However, the relationship between quality and size
depends on the frame content, which is difficult to predict upfront. The sharpening
filter and the noise reduction filter modify certain pixels of the imagine, for instance
to remove elements that appear after compressing the original frame. The sharpening
filter has a parameter with a value that ranges between 0 and 5, where 0 indicates no
sharpening and 5 maximum sharpening. The noise reduction filter has a parameter
that specifies the size of the applied noise reduction filter, which also varies between
0 and 5.

Task. Enhance the video encoder with self-adaptation capabilities to deal with the
conflicting goals of compressing frames and ensuring a required level of quality. Iden-
tify the basic concepts of the self-adaptive system (environment, managed system,
feedback loop, adaptation goals) and describe the responsibilities of each element.
Draw the conceptual model that shows your solution to this adaptation problem.
Additional material. See the Self-Adaptive Video Encoder artifact website [136].

Implementation feedback loop Tele-Assistance System: level D

Setting. TAS, short for Tele-Assistance System, is a Java-based artifact that supports
research and experimentation on self-adaptation. TAS simulates a health assistance
service for elderly and chronically sick people, similar to the health assistance ser-
vice used in this chapter. TAS uses a combination of sensors embedded in a wearable
device and remote third-party services from medical analysis, pharmacy and emer-
gency service providers. The TAS workflow periodically takes measurements of the
vital parameters of a patient and employs a medical service for their analysis. The
result of an analysis may trigger the invocation of a pharmacy service to deliver new
medication to the patient or to change their dose of medication, or, in a critical situa-
tion, the invocation of an alarm service that will send a medical assistance team to the
patient. The same alarm service can be invoked directly by the patient by using a panic
button on the wearable device. In practice, the TAS service will be subject to a variety
of uncertainties: services may fail, service response times may vary, or new services
may become available. Different types of adaptations can be applied to deal with these
uncertainties, such as switching to equivalent services, simultaneously invoking sev-
eral services for equivalent operations, or changing the workflow architecture.
Task. Download the source code of TAS. Read the developers guide that is part of the
artifact distribution, and prepare Eclipse to work with the artifact. Execute the TAS
artifact and get familiar with it. Now design a feedback loop that deals with service
failures. The first adaptation goal is a threshold goal that requires that the average

13

14

1 Basic Principles of Self-Adaptation and Conceptual Model

number of service failures should not exceed 10% of the invocations over 100 service
invocations. The second adaptation goal is to minimize the cost for service invoca-
tions over 100 service invocations. Implement your design and test it. Evaluate your
solution and assess.

Additional material. For the TAS artifact, see [201]. The latest version of TAS can
be downloaded from the TAS website [212]. For background information about TAS,
see [200].

1.8 Bibliographic Notes

The external principle of self-adaptation is grounded in the description of what constitutes a
self-adaptive system provided in a roadmap paper on engineering self-adaptive system [50].
Y. Brun et al. complemented this description and motivated the “self” prefix indicating that
the system decides autonomously [35]. The internal principle of self-adaptation is grounded
in the pioneering work of P. Oreizy et al. that stressed the need for a systematic approach
to deal with software modification at runtime (as opposed to ad-hoc “patches”) [150]. In
their seminal work on Rainbow, D. Garlan et al. contrasted internal mechanisms to adapt
a system (for instance using exceptions) with external mechanisms that enhance a system
with an external feedback loop that is responsible for handling adaptation [81].

Back in 1948, N. Wiener published a book that coined the term “cybernetics” to refer to
self-regulating mechanisms. This work laid the theoretical foundation for several fields in
autonomous systems. M. Wooldridge provided a comprehensive and readable introduction
to the theory and practice of the field of multi-agent systems [215]. F. Heylighen reviewed
the most important concepts and principles of self-organization [97]. Based on these princi-
ples, V. Dyke Parunak et al. demonstrated how digital pheromones enable robust coordina-
tion between unmanned vehicles [190]. T. De Wolf and T. Holvoet contrast self-organization
with emergent behavior [60].

B. Schilit et al. defined the notion of context-aware computing and described different cat-
egories of context-aware applications [172]. In the context of autonomic systems, Hinchey
and Sterritt referred to self-awareness as the capability of a system to be aware of its states
and behaviors [98]. M. Parashar and S. Hariri referred to self-awareness as the ability of a
system to be aware of its operational environment [153]. P. Gandodhar et al. reported the
results of a survey on context-awarenss [79], and C. Perera et al. surveyed context-aware
computing in the area of the Internet-of-Things [154]. S. Kounev et al. defined self-aware
computing systems and outlined a taxonomy for these types of systems [119].

Several authors have provided arguments for why engineering self-adaptation at different
levels of the technology stack poses different challenges. Among these are the growing com-
plexity of the adaptation space from lower-level resources up to higher-level software [5, 36],
and the increasingly complex interplay between system qualities on the one hand and adap-
tation options at higher levels of the software stack on the other hand [72].

M. Jackson contrasted the notion of environment, which is not under the control of a
designer, and the system, which is controllable [106]. J. Kramer and J. Magee introduced the
notion of quiescence [120]. A quiescent state of a software element is a state where no activ-
ity is going on in the element so that it can be safely updated. Such a state may be reached

1.8 Bibliographic Notes

spontaneously or it may need to be enforced. J. Zhang and B. Cheng created the A-LTL
specification language to specify the semantics of adaptive programs [218], underpinning
safe adaptations. The OSGi framework [2] offers a modular service platform for Java that
implements a dynamic component model that allows components (so called bundles) to be
installed, started, stopped, updated, and uninstalled without requiring a reboot.

J. Kephart and D. Chess identified the primary types of higher-level adaptation
goals [112]: self-configuration, self-optimization, self-healing, and self-protection.

M. Salehie and L. Tahvildari referred to self-adaptive software as software that embodies
a closed-loop mechanism in the form of an adaptation loop [170]. Similarly, Dobson et al.
referred to an autonomic control loop, which includes processes to collect and analyze data,
and decide and act upon the system [65]. Y. Brun et al. argued for making feedback loops
first-class entities in the design and operation of self-adaptive systems [35].

J. Camara et al. elaborated on involving humans in the feedback loop to support
different self-adaptation functions, including the decision-making process [44]. Weyns
et al. presented a set of architectural patterns for decentralizing control in self-adaptive
systems [209].

The service-based health assistance system used in this book is based on the
Tele-Assistance System (TAS) exemplar [200]. TAS offers a prototypical application
that can be used to evaluate and compare new methods, techniques, and tools for research
on self-adaptation in the domain of service-based systems. The service-based health
assistance system was originally introduced in [15].

15

Index

a
adaptation action 51
adaptation goals 8, 45, 70, 78, 115, 121

adaptation options 48, 102, 141, 150, 208

adaptation space 48, 151
reduction 208

adaptive control 177

analyzer 47

analysis mechanism 49

basic workflow 47

tactics 156

architectural model 72
adapatation strategies 72
adapation operators 73
analyses 72

component model 72
constraints 72

properties 72

architecture-based adaptation 18, 63

aspect-oriented programming 65

automata 99,129, 151

automatic controller construction 177
formal guarantees 181
MIMO controllers 184
model update 179
incremental 180
rebuilding 180

MPC 189

phases 178
controller creation 179
model building 178
operation 179
push-buttom methodology 178

SISO controllers 178
automating tasks 18
manageability problems 33
autonomic computing 34
autonomous system 4
awareness requirements 123
types 123

b

Bayesian estimation 204
transition probability matrix 204
updating rule 206

c
causality 90
weak causality 91
classification (learning) 208
incremental classifier 210
Cloud infrastructure 213
auto-scaling 214
scaling rules 215
comprehensive reference model 75
distribution perspective 79
MAPE-K perspective 78
reflection perspective 76
computational reflection 64
context-awareness 4
control theory 171
basic feedback control loop 173
control-based software adaptation 20
coordination mechanism 81
coordination channel 82
coordination model 81
coordination protocol 81

An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspective,

First Edition. Danny Weyns.

© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.

263

Index

d

DeltaloT 25

effectors 28

management interface 27
multi-hop communication 25

over provisioning 29

quality requirements 29

queues 27

signal to noice ratio 28

time synchronized communication 27
uncertainties 28

distribution versus decentralization 82

e

effector 51

environment 5

essential maintenance tasks 37
evolution management 53
evolution requirements 124
operators 125

executor 51

basic workflow 51

external adaptation mechanism 64

f

fading boundaries 137
fail-safe strategy 49
feedback control loop 173
discrete time system model 174
PIcontrol 174
properties 175
accuracy 175
overshoot 176
robustness 176
settling time 176
stability 175
purposes 174
system model 174
transfer function 181
pole 182
Z-transform 181
feedback loop 8, 34
functional requirements 127
deploy and execute 130
design and verify 128

fuzzy logic controller 214
fuzzy Q-learning 217
Q-table 218

9

guarantees under uncertainty 20

I

integration evolution and adaptation
management 55

internal adaptation mechanism 64

Internet-of-Things 25

k

Kalman filter 180, 191

knowledge 44
adaptation goals 45
environment model 45
managed system model 45
MAPE working model 45

l

learning from experience 20
look-ahead horizon 154

m

machine learning 201

managed system 7

managing system

primary functions 43
reference model 44

MAPE-K model 44
workflow 202

Markov model 96, 144
DTMC 146, 204

Markov property 204
MDP 156

PCTL 147

meta-object protocol 65

meta-requirements 122
awareness requirements 123
semantics 124
evolution requirements 124
operationalization 126

model-driven engineering 89

monitor 46
basic workflow 46
multi-agent system 4

p
plan 51

planner 49
basic workflow 50
planning mechanism 51

PRISM 147
probe 46
q

quality model 151
queuing model 97
quiescence 7

r
rationale for architectural prespective 64
abstraction to manage system change 66
dealing with system-wide concerns 66
falicitating scalabily 66
integrated approach 65
leveraging consolidated efforts 65
separating domain and adaptation
concerns 65
reference model of managing system 43
reinforcement learning 217
relaxing requirements 116
handling uncertainty 118
language operators 116
operationalization 118
mitigation mechanims 119
requirements reflection 119
semantics 118
requirements engineering 115
goal-based modeling 119
requirements-driven adaptation 19
reward/cost structure 156
RUBIS 155
runtime model 90
definition 90
runtime models 18
declarative versus procedural 94
dimensions 92

Index

formal versus informal 98
functional versus qualitative 95
functional models 95
quality models 95
MAPE components exchange K models
103
MAPE components share K models 101
MAPE models share K models 105
motivations 91
principal strategies 101
structural versus behavioral 93
runtime quantitative verification 144

S

self-adaptation 1
comprehensive reference model 75
conceptual model 5
external principle 3

fading boundaries 17
internal principle 3
motivation 33

seven waves 17
self-adaptation management 54
self-awareness 4
self-configuration 42
self-healing 38
self-optimization 37
self-organizing system 4
self-protection 41
service-based health assistance system 1
seven waves 18

enabled contributions 20
schematic overview 18
selected work 20

simplex method 185

software evolution 53
software-intensive system 1
state-space explosion 149
statistical model checking 152

t

taming uncertainty 137
analysis adaptation options 141
exhaustive verification 144
integrated process 160

265

266 | Index

taming uncertainty (contd.)
deploy managing system 162
evolve goals and managing system 163
four stages 160
implement and verify managing system
161
verify options, decide and adapt 163
proactive latency-aware adaptation 154
runtime quantitative verification 144
selection best adaptation option 143
statistical model checking 149
three-layer model 66
change management 67
component control 67
goal management 68
mapping to conceptual model 70

u
uncertainty 1,139
sources 139

context 141

goals 140

human involvement 141

system itself 139
taming uncertainty 141
working definition 139
Upaal 152
utility function 36, 146, 156
expected utility 36

241

Bibliography

1 T. Abdelzaher, Y. Diao, J. Hellerstein, C. Lu, and X. Zhu. Introduction to Control
Theory And Its Application to Computing Systems. In Zn Liu and C. Xia, edi-
tors, Performance Modeling and Engineering, pages 185-215. Springer, 2008. ISBN
978-0-387-79361-0. doi: 10.1007/978-0-387-79361-0_7. URL https://doi.org/10
.1007/978-0-387-79361-0_7.

2 OSGI Alliance. OSGI Service Platform, Release 3. I0S Press, Inc., 2003. ISBN
978-1-58603-311-8. URL https://www.iospress.nl/book/osgi-service-
platform-release-3/.

3 R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126(2):183-235, 1994. ISSN 0304-3975. doi: https://doi.org/10.1016/
0304-3975(94)90010-8. URL http://www.sciencedirect.com/science/
article/pii/0304397594900108.

4 S. Aminikhanghahi and D. Cook. A Survey of Methods for Time Series Change Point
Detection. Knowledge Information Systems, 51(2):339-367, May 2017. ISSN 0219-1377.
doi: 10.1007/s10115-016-0987-z. URL https://doi.org/10.1007/s10115-016-
0987-z.

5 J. Andersson, R. de Lemos, S. Malek, and D. Weyns. Modeling Dimensions of
Self-Adaptive Software Systems. In B. Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, editors, Software Engineering for Self-Adaptive Systems, pages 27-47. Springer,
2009. ISBN 978-3-642-02161-9. doi: 10.1007/978-3-642-02161-9_2. URL http://dx
.doi.org/10.1007/978-3-642-02161-9 2.

6 J. Andersson, L. Baresi, N. Bencomo, R. de Lemos, A. Gorla, P. Inverardi,
and T. Vogel. Software Engineering Processes for Self-Adaptive Systems. In R.
de Lemos, H. Giese, H. Miiller, and M. Shaw, editors, Software Engineering for
Self-Adaptive Systems II, pages 51-75. Springer, 2013. ISBN 978-3-642-35813-5. doi:
10.1007/978-3-642-35813-5_3. URL https://doi.org/10.1007/978-3-642-
35813-5_3.

7 K. Angelopoulos, A. Papadopoulos, V. Silva Souza, and J. Mylopoulos. Engineering
Self-Adaptive Software Systems: From Requirements to Model Predictive Control.
Transactions on Autonomous and Adaptive Systems, 13(1):1:1-1:27, April 2018. ISSN
1556-4665. doi: 10.1145/3105748. URL http://doi.acm.org/10.1145/3105748.

8 K. Astrom and R. Murray. Feedback Systems: An Introduction for Scientists
and Engineers. Princeton University Press, 11/2019. ISBN 978-0-691-13576-2.

An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspective,
First Edition. Danny Weyns.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.

242

Bibliography

10

11

12

13

14

15

16

17

18

19

URL http://www.cds.caltech.edu/~murray/amwiki/index.php/
Second Edition.

M. Autili, P. Inverardi, R. Spalazzese, M. Tivoli, and F. Mignosi. Automated Synthesis
of Application-layer Connectors from Automata-based Specifications. Journal of Com-
puter and System Sciences, 104:17-40, September 2019. doi: 10.1016/j.jcss.2019.03.001.
URL https://www.sciencedirect.com/science/article/pii/
S0022000019300248.

C. Baier and J.P. Katoen. Principles of Model Checking. The MIT Press. Cambridge,
Massachusetts, 2008. ISBN 9780262026499. URL https://mitpress.mit.edu/
books/principles-model-checking.

D. Barbosa, R. de Moura Lima, P. Maia, and E. Junior. Lotus@Runtime: A Tool

for Runtime Monitoring and Verification of Self-adaptive Systems. In 12th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 24-30, Buenos Aires, Argentina, 2017. IEEE. ISBN 978-1-5386-1550-8. doi:
10.1109/SEAMS.2017.18. URL https://doi.org/10.1109/SEAMS.2017.18.

D. Barbosa, R. de Moura Lima, P. Maia, and E. Junior. Lotus@Runtime Artifact,
November 2019. URL https://www.hpi.uni-potsdam.de/giese/public/
selfadapt/exemplars/lotusruntime/.

D. Barbosa, R. de Moura Lima, P. Maia, and E. Junior. Lotus@Runtime Github,
November 2019. URL https://github.com/davimonteiro.

L. Baresi and C. Ghezzi. The Disappearing Boundary between Development-time and
Run-time. In Future of Software Engineering Research, pages 17-22, Santa Fe, New
Mexico, USA, 2010. doi: 10.1145/1882362.1882367. URL https://doi.org/10
.1145/1882362.1882367.

L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation of Web Ser-
vice Compositions. IET Software, 1(6):219-232, December 2007. ISSN 1751-8814. doi:
10.1049/iet-sen:20070027. URL https://ieeexplore.ieee.org/document/
4435102.

L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy Goals for Requirements-Driven Adapta-
tion. In 18th IEEE International Requirements Engineering Conference, pages 125-134,
Banff, Alberta, Canada, 2010. IEEE. ISBN 978-0-7695-4162-4. doi: 10.1109/RE.2010.25.
URL http://dx.doi.org/10.1109/RE.2010.25.

C. Barna, H. Ghanbari, M. Litoiu, and M. Shtern. Hogna: A Platform for Self-adaptive
Applications in Cloud Environments. In 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pages 83-87, Florence, Italy, 2015.
IEEE. doi: 10.1109/SEAMS.2015.26. URL http://dl.acm.org/citation.cfm?
1d=2821357.2821372.

C. Barna, H. Ghanbari, M. Litoiu, and M. Shtern. Hogna Artifact, November 2019.
URL https://www.hpi.uni-potsdam.de/giese/public/selfadapt/
exemplars/hogna/.

J. Beal, M. Viroli, D. Pianini, and F. Damiani. Self-Adaptation to Device Distribu-
tion in the Internet of Things. ACM Transactions on Autonomous and Adaptive
Systems, 12(3):12:1-12:29, September 2017. ISSN 1556-4665. doi: 10.1145/3105758.
URL http://doi.acm.org/10.1145/3105758.

Bibliography

20 N. Bencomo and A. Belaggoun. Supporting Decision-Making for Self-Adaptive Sys-
tems: From Goal Models to Dynamic Decision Networks. In International Working
Conference on Requirements Engineering: Foundation for Software Quality, Essen, Ger-
many, 2013. Springer. ISBN 978-3-642-37422-7. doi: 10.1007/978-3-642-37422-7_16. URL
https://link.springer.com/chapter/10.1007/978-3-642-37422-7_16.

21 N. Bencomo and L. Hernan Garcia Paucar. RaM: Causally-Connected and
Requirements-Aware Runtime Models using Bayesian Learning. In 22nd Interna-
tional Conference on Model Driven Engineering Languages and Systems, pages 216-226,
Munich, Germany, 2019. IEEE. doi: 10.1109/MODELS.2019.00005. URL https://doi
.0org/10.1109/MODELS.2019.00005.

22 N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier. Requirements Reflec-
tion: Requirements as Runtime Entities. In 32nd International Conference on Software
Engineering, Cape Town, South Africa, 2010. IEEE. doi: 10.1145/1810295.1810329. URL
https://ieeexplore.ieee.org/document/6062159.

23 N. Bencomo, R. France, B. Cheng, and U. Assmann. Models@Run.Time: Foun-
dations, Applications, and Roadmaps, volume 8378 of Lecture Notes in Computer
Science. Springer, 2014. ISBN 978-3-319-08915-7. doi: 10.1007/978-3-319-08915-7. URL
https://www.springer.com/gp/book/9783319089140.

24 N. Bencomo, S. G6tz, and H. Song. Models@Run.Time: A Guided Tour of the State
of the Art and Research Challenges. Software & Systems Modeling, 18(5):3049-3082,
October 2019. doi: 10.1007/s10270-018-00712-x. URL https://doi.org/10.1007/
510270-018-00712-x.

25 A. Bennaceur, C. McCormick, J. Galan, C. Perera, A. Smith, A. Zisman, and B.
Nuseibeh. Feed Me, Feed Me: An Exemplar for Engineering Adaptive Software. In
11th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pages 89-95, Austin, Texas, 2016. ACM. ISBN 978-1-4503-4187-5. doi:
10.1145/2897053.2897071. URL http://doi.acm.org/10.1145/2897053
.2897071.

26 A. Bennaceur, C. McCormick, J. Galan, C. Perera, A. Smith, Andrea Z., and B.
Nuseibeh. Feed Me, Feed Me Artifact, November 2019. URL https://www.hpi
.uni-potsdam.de/giese/public/selfadapt/exemplars/feed-me-feed-
me/.

27 A. Bennaceur, C. McCormick, J. Galdn, C. Perera, A. Smith, Andrea Z., and B.
Nuseibeh. Feed Me, Feed Me Artifact Website, November 2019. URL http://seadl
.open.ac.uk/fmfm/.

28 K. Bennett and V. Rajlich. Software Maintenance and Evolution: A Roadmap. In The
Future of Software Engineering, pages 73-87, Limerick, Ireland, 2000. ACM. ISBN
1-58113-253-0. doi: 10.1145/336512.336534. URL http://doi.acm.org/10.1145/
336512.336534.

29 J. Bernardo and A. Smith. Bayesian Theory, 2nd Edition. Wiley, 2007. ISBN
978-0470028735. URL https://www.wiley.com/en-us/Bayesian+Theory-
p-9780471924166.

30 D. Berry, B. Cheng, and J. Zhang. The Four Levels of Requirements Engineering
for and in Dynamic Adaptive Systems. In International Workshop on the Design
and Evolution of Autonomic Application Aoftware, Saint Louis, MO, USA, 2005. doi:

243

244

Bibliography

31

32

33

34

35

36

37

38

39

40

10.1109/ICSE.2005.1553669. URL https://ieeexplore.ieee.org/document/
15536609.

G. Blair, N. Bencomo, and R. France. Models@Run.Time. IEEE Computer,
42(10):22-27, October 2009. ISSN 0018-9162. doi: 10.1109/MC.2009.326. URL
https://dl.acm.org/doi/10.1109/MC.2009.326.

L. Bojke, K. Claxton, M. Sculpher, and Palmer S. Characterizing Structural Uncer-
tainty in Decision Analytic Models: A Review and Application of Methods. Value
Health, 12(5):739-749, July-August 2009. doi: 10.1111/j.1524-4733.2008.00502.x. URL
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1524-4733
.2008.00502.x.

V. Braberman, N. D’Ippolito, N. Piterman, D. Sykes, and S. Uchitel. Controller
Synthesis: From Modelling to Enactment. In 35th International Conference on Soft-
ware Engineering, pages 1347-1350, San Francisco, CA, USA, 2013. IEEE. ISBN
978-1-4673-3076-3. doi: 10.1109/ICSE.2013.6606714. URL http://dl.acm.org/
citation.cfm?1d=2486788.2487002.

Y. Brun. Improving Impact of Self-adaptation and Self-management Research Through
Evaluation Methodology. In International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, Cape Town, South Africa, 2010. ACM. doi:
10.1145/1808984.1808985. URL http://doi.acm.org/10.1145/1808984
.1808985.

Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Miiller, M.
Pezze, and M. Shaw. Engineering Self-Adaptive Systems Through Feedback Loops. In
B. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, editors, Software Engineering
for Self-Adaptive Systems, pages 48-70. Springer, 2009. ISBN 978-3-642-02160-2. doi:
10.1007/978-3-642-02161-9_3. URL http://dx.doi.org/10.1007/978-3-642-
02161-9 3.

Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M. Shaw, and M. Smit. A Design
Space for Self-Adaptive Systems. In R. de Lemos, H. Giese, H. Muller, and M. Shaw,
editors, Software Engineering for Self-Adaptive Systems II, pages 33-50. Springer, 2013.
ISBN 978-3-642-35813-5. doi: 10.1007/978-3-642-35813-5_2. URL http://dx.doi
.org/10. 1007/978—3—642—35813—5_2.

T. Bures, F. Plasil, M. Kit, P. Tuma, and N. Hoch. Software Abstractions for Compo-
nent Interaction in the Internet of Things. Computer, 49(12): 50-59, December 2016.
ISSN 1558-0814. doi: 10.1109/MC.2016.377. URL https://ieeexplore.ieee
.org/document/7756271.

C. Cachin. Architecture of the Hyperledger Blockchain Fabric. In Distributed Cryp-
tocurrencies and Consensus Ledgers, Chicago, Illinois, USA, 2016. IBM Research. URL
https://www.zurich.ibm.com/dccl/papers/cachin dccl.pdf.

R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli.
Dynamic QoS Management and Optimization in Service-Based Systems. IEEE Trans-
actions on Software Engineering, 37 (3):387-409, May 2011. ISSN 0098-5589. doi:
10.1109/TSE.2010.92. URL http://dx.doi.org/10.1109/TSE.2010.92.

R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-adaptive Software
Needs Quantitative Verification at Runtime. Communications of the ACM, 55(9):69-77,

41

42

43

44

45

46

47

48

49

Bibliography | 245

2012. doi: 10.1145/2330667.2330686. URL https://doi.org/10.1145/2330667
.2330686.

R. Calinescu, S. Gerasimou, and A. Banks. Self-adaptive Software with Decen-

tralised Control Loops. In International Conference on Fundamental Approaches

to Software Engineering, London, UK, 2015. Springer. ISBN 978-3-662-46675-9. doi:
10.1007/978-3-662-46675-9_16. URL https://doi.org/10.1007/978-3-662-
46675-9 16.

R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, and T. Kelly. Engi-
neering Trustworthy Self-Adaptive Software with Dynamic Assurance Cases. IEEE
Transactions on Software Engineering, 44(11):1039-1069, November 2018. ISSN
2326-3881. doi: 10.1109/TSE.2017.2738640. URL https://ieeexplore.ieee.org/
document /8008800.

J. Camara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. Schmerl, and R.

Ventura. Evolving an Adaptive Industrial Software System to Use Architecture-based
Self-adaptation. In 8th International Symposium on Software Engineering for Adap-

tive and Self-Managing Systems, pages 13-22, San Francisco, CA, USA, 2013. doi:
10.1109/SEAMS.2013.6595488. URL https://doi.org/10.1109/SEAMS.2013
.6595488.

J. Camara, G. Moreno, and D. Garlan. Reasoning about Human Participation in
Self-Adaptive Systems. In 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 146-156, Florence, Italy, 2015. ACM. doi:
10.1109/SEAMS.2015.14. URL https://ieeexplore.ieee.org/abstract/
document/71946609.

M. Caporuscio, V. Grassi, M. Marzolla, and R. Mirandola. GoPrime: A Fully Decentral-
ized Middleware for Utility-Aware Service Assembly. IEEE Transactions on Software
Engineering, 42(2):136-152, February 2016. doi: 10.1109/TSE.2015.2476797. URL
https://ieeexplore.ieee.org/document/7243346.

V. Cardellini, E. Casalicchio, V. Grassi, and F. Lo Presti. Adaptive Management

of Composite Services under Percentile-Based Service Level Agreements. In P.

Maglio, M. Weske, J. Yang, and M. Fantinato, editors, International Conference on
Service-Oriented Computing, pages 381-395, San Francisco, CA, USA, 2010. Springer.
ISBN 978-3-642-17358-5. doi: 10.1007/978-3-642-17358-5_26. URL https://link
.springer.com/chapter/10.1007/978-3-642-17358-5_26.

C. Cetina, P. Giner, J. Fons, and V. Pelechano. Autonomic Computing through Reuse
of Variability Models at Runtime: The Case of Smart Homes. Computer, 42(10):37-43,
October 2009. ISSN 1558-0814. doi: 10.1109/MC.2009.309. URL https://dl.acm
.org/doi/10.1109/MC.2009.3009.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey. ACM Comput-
ing Surveys, 41(3):15:1-15:58, July 2009. ISSN 0360-0300. doi: 10.1145/1541880.1541882.
URL http://doi.acm.org/10.1145/1541880.1541882.

B. Cheng and J. Atlee. Research Directions in Requirements Engineering. In Future

of Software Engineering, pages 285-303, Minneapolis, MN, USA, 2007. IEEE. ISBN
0-7695-2829-5. doi: 10.1109/FOSE.2007.17. URL https://doi.org/10.1109/FOSE
.2007.17.

246

Bibliography

50

51

52

53

54

55

56

57

58

B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker,

N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein,
C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. Kienle, J. Kramer, M. Litoiu, S. Malek,

R. Mirandola, H. Miiller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J.
Whittle. Software Engineering for Self-Adaptive Systems: A Research Roadmap. In B.
Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, editors, Software Engineering
for Self-Adaptive Systems, pages 1-26. Springer, 2009. ISBN 978-3-642-02161-9. doi:
10.1007/978-3-642-02161-9_1. URL https://doi.org/10.1007/978-3-642-
02161-9 1.

B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A Goal-Based Modeling Approach
to Develop Requirements of an Adaptive System with Environmental Uncertainty.

In 12th International Conference on Model Driven Engineering Languages and Sys-
tems, pages 468-483, Denver, CO, 2009. Springer. ISBN 978-3-642-04424-3. doi:
10.1007/978-3-642-04425-0_36. URL http://dx.doi.org/10.1007/978-3-
642-04425-0_36.

S. Cheng and D. Garlan. Stitch: A Language for Architecture-based Self-adaptation.
Journal of Systems and Software, 85(12):2860-2875, December 2012. ISSN 0164-1212.
doi: 10.1016/j.js5.2012.02.060. URL http://dx.doi.org/10.1016/j.jss.2012
.02.060.

S. Cheng and B. Schmerl. ZNN Artifact, November 2019. URL https://www
.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-
problem-znn-com/.

Z. Coker, D. Garlan, and C. Le Goues. SASS: Self-adaptation Using Stochastic

Search. In 10th International Symposium on Software Engineering for Adap-

tive and Self-Managing Systems, pages 168-174, Florence, Italy, 2015. IEEE.

doi: 10.5555/2821357.2821386. URL http://dl.acm.org/citation.cfm?
1d=2821357.2821386.

D. Cooray, S. Malek, R. Roshandel, and D. Kilgore. RESISTing Reliability Degradation
Through Proactive Reconfiguration. In International Conference on Automated Software
Engineering, pages 83-92, Antwerp, Belgium, 2010. ACM. ISBN 978-1-4503-0116-9.
doi: 10.1145/1858996.1859011. URL http://doi.acm.org/10.1145/1858996
.1859011.

C. E. da Silva, J. D. S. da Silva, C. Paterson, and R. Calinescu. Self-Adaptive Role-Based
Access Control for Business Processes. In 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pages 193-203, Buenos Aires,
Argentina, 2017. doi: 10.1109/SEAMS.2017.13. URL https://doi.org/10.1109/
SEAMS.2017.13.

A. David, K. Larsen, and A. Legay et al. Uppaal SMC Tutorial. International Journal
on Software Tools for Technology Transfer, 17(4): 397-415, 2015. ISSN 1433-2787. doi:
10.1007/s10009-014-0361-y. URL https://doi.org/10.1007/s10009-014-
0361-y.

R. de Lemos, H. Giese, H. Miiller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G.
Tamura, N. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K. Goschka, A. Gorla, V.
Grassi, P. Inverardi, G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovski,

59

60

61

62

63

64

65

66

Bibliography

R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze, C. Prehofer, W. Schifer, R.
Schlichting, D. Smith, J. Pedro Sousa, L. Tahvildari, K. Wong, and J. Wuttke. Software
Engineering for Self-Adaptive Systems: A Second Research Roadmap. In R. de Lemos,
H. Giese, H. Muller, and M. Shaw, editors, Software Engineering for Self-Adaptive Sys-
tems II, pages 1-32. Springer, 2010. doi: 10.1007/978-3-642-35813-5_1. URL https://
doi.org/10.1007/978-3-642-35813-5 1.

R. de Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu, B. Schmerl,

D. Weyns, L. Baresi, N. Bencomo, Y. Brun, J. Camara, R. Calinescu, M. Cohen, A.
Gorla, V. Grassi, L. Grunske, P. Inverardi, J. Jezequel, S. Malek, R. Mirandola, M. Mori,
H. Miiller, R. Rouvoy, C. Rubira, E. Rutten, M. Shaw, G. Tamburrelli, G. Tamura,

N. Villegas, T. Vogel, and F. Zambonelli. Software Engineering for Self-Adaptive
Systems: Research Challenges in the Provision of Assurances. In R. de Lemos, D.
Garlan, C. Ghezzi, and H. Giese, editors, Software Engineering for Self-Adaptive
Systems III. Assurances, pages 3-30. Springer, 2017. ISBN 978-3-319-74183-3. doi:
10.1007/978-3-319-74183-3_1. URL https://link.springer.com/chapter/10
. 1007/978—3—319—74183—3_1.

T. De Wolf and T. Holvoet. Emergence Versus Self-Organisation: Different Concepts
but Promising When Combined. In Engineering Self-Organising Systems: Methodolo-
gies and Applications, pages 1-15, Utrecht, The Netherlands, 2005. Springer. ISBN
978-3-540-31901-6. doi: 10.1007/11494676_1. URL http://dx.doi.org/10.1007/
11494676 1.

A. Dey. Context-Aware Computing. In J. Krumm, editor, Ubiquitous Computing Fun-
damentals, pages 321-352. Chapman & Hall/CRC, 2009. ISBN 1420093606. URL
https://dl.acm.org/doi/book/10.5555/1803789.

A. Diaconescu, J. McCann, and P. Lalanda. Autonomic Computing: Princi-

ples, Design and Implementation. Springer, 2013. ISBN 978-1-4471-5007-7. doi:
10.1007/978-1-4471-5007-7. URL https://www.springer.com/gp/book/
9781447150060.

N. D’Ippolito, V. Braberman, J. Kramer, J. Magee, D. Sykes, and S. Uchitel. Hope

for the Best, Prepare for the Worst: Multi-tier Control for Adaptive Systems. In 36th
International Conference on Software Engineering, pages 688-699. ACM, 2014. ISBN
978-1-4503-2756-5. doi: 10.1145/2568225.2568264. URL http://doi.acm.org/10
.1145/2568225.2568264.

DistriNet. PacketWorld Test Bed, November 2019. URL https://sourceforge
.net/projects/packet-world/.

S. Dobson, S. Denazis, D. Fernandez, A. and Gaiti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, Ni. Schmidt, and F. Zambonelli. A Survey of Autonomic Communications.
ACM Transactions on Autonomous and Adaptive Systems, 1(2):223-259, December
2006. ISSN 1556-4665. doi: 10.1145/1186778.1186782. URL http://doi.acm.org/
10.1145/1186778.1186782.

R. Edwards and N. Bencomo. DeSiRE: Further Understanding Nuances of Degrees

of Satisfaction of Non-functional Requirements Trade-off. In 13th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,

pages 12-18, Gothenburg, Sweden, 2018. ACM. ISBN 978-1-4503-5715-9. doi:

247

248

Bibliography

67

68

69

70

71

72

73

74

10.1145/3194133.3194142. URL http://doi.acm.org/10.1145/3194133
.3194142.

A. Elkhodary, N. Esfahani, and S. Malek. FUSION: A Framework for Engineering
Self-tuning Self-adaptive Software Systems. In 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 7-16, Santa Fe, New Mex-
ico, USA, 2010. ACM. ISBN 978-1-60558-791-2. doi: 10.1145/1882291.1882296. URL
http://doi.acm.org/10.1145/1882291.1882296.

1. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model Evolution by Run-time
Parameter Adaptation. In 31st International Conference on Software Engineering, pages
111-121, Vancouver, British Columbia, Canada, 2009. IEEE. ISBN 978-1-4244-3453-4.
doi: 10.1109/ICSE.2009.5070513. URL http://dx.doi.org/10.1109/ICSE.2009
.5070513.

N. Esfahani and S. Malek. Uncertainty in Self-Adaptive Software Systems. In R.

de Lemos, H. Giese, H. Miiller, and M. Shaw, editors, Software Engineering for
Self-Adaptive Systems II, pages 214-238. Springer, 2013. ISBN 978-3-642-35813-5. doi:
10.1007/978-3-642-35813-5_9. URL https://doi.org/10.1007/978-3-642-
35813-5_9.

N. Esfahani, E. Kouroshfar, and S. Malek. Taming Uncertainty in Self-adaptive
Software. In 19th SIGSOFT Symposium and the 13th European Conference on Foun-
dations of Software Engineering, pages 234-244, Szeged, Hungary, 2011. ACM. ISBN
978-1-4503-0443-6. doi: 10.1145/2025113.2025147. URL http://doi.acm.org/10
.1145/2025113.2025147.

A. Filieri, H. Hoffmann, and M. Maggio. Automated Design of Self-adaptive Soft-
ware with Control-theoretical Formal Guarantees. In 36th International Conference

on Software Engineering, pages 299-310, Hyderabad, India, 2014. ACM. ISBN
978-1-4503-2756-5. doi: 10.1145/2568225.2568272. URL http://doi.acm.org/
10.1145/2568225.2568272.

A. Filieri, H. Hoffmann, and M. Maggio. Automated Multi-objective Control for
Self-adaptive Software Design. In 10th Joint Meeting on Foundations of Software
Engineering, pages 13-24, Bergamo, Italy, 2015. ACM. ISBN 978-1-4503-3675-8.

doi: 10.1145/2786805.2786833. URL http://doi.acm.org/10.1145/2786805
.2786833.

A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito, I. Gerostathopoulos, A. Hempel,
H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein, F. Krikava, S. Misailovic, A.
Papadopoulos, S. Ray, A. Sharifloo, S. Shevtsov, M. Ujma, and T. Vogel. Software
Engineering Meets Control Theory. In 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, pages 71-82, Florence, Italy, 2015.
IEEE. doi: 10.1109/SEAMS.2015.12. URL http://dl.acm.org/citation.cfm?
1d=2821357.2821370.

A. Filieri, M. Maggio, K. Angelopoulos, N. D’ippolito, I. Gerostathopoulos, A. Hempel,
H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein, F. Krikava, S. Misailovic, A.
Papadopoulos, S. Ray, A. Sharifloo, S. Shevtsov, M. Ujma, and T. Vogel. Control
Strategies for Self-Adaptive Software Systems. ACM Transactions on Autonomous and
Adaptive Systems, 11(4):24:1-24:31, 2017. ISSN 1556-4665. doi: 10.1145/3024188. URL
http://doi.acm.org/10.1145/3024188.

Bibliography

75 P. Flach. Machine Learning: The Art and Science of Algorithms That Make Sense of
Data. Cambridge University Press, 2012. ISBN 9781107422223. URL https://www
.cambridge.org/be/academic/subjects/computer-science/pattern-
recognition-and-machine-learning/.

76 World Economic Forum. How to Prevent Discriminatory Outcomes in Machine Learn-
ing, November 2019. URL https://www.weforum.org/whitepapers/how-to-
prevent-discriminatory-outcomes-in-machine-learning/.

77 E. Fosler-Lussier. Markov Models and Hidden Markov Models: A Brief Tutorial.
Berkeley Technical Report TR-98-041, November 2019. URL http://www.icsi
.berkeley.edu/ftp/global/pub/techreports/1998/tr-98-041.pdf.

78 E. Fredericks, B. DeVries, and B. Cheng. AutoRELAX: Automatically RELAXing a
Goal Model to Address Uncertainty. Empirical Software Engineering, 19(5):1466-1501,
2014. doi: 10.1007/s10664-014-9305-0. URL https://doi.org/10.1007/s10664-
014-9305-0.

79 P. Gandodhar and S. Chaware. Context Aware Computing Systems: A Survey. In
2nd International Conference on IoT in Social, Mobile, Analytics and Cloud, pages
605-608, Tamil Nadu, India, 2018. doi: 10.1109/1-SMAC.2018.8653786. URL https://
ieeexplore.ieee.org/document /8653786.

80 D. Garlan and B. Schmerl. Model-based Adaptation for Self-healing Systems. In First
Workshop on Self-healing Systems, pages 27-32, Charleston, South Carolina, 2002.
ACM. ISBN 1-58113-609-9. doi: 10.1145/582128.582134. URL http://doi.acm
.0org/10.1145/582128.582134.

81 D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure. IEEE Com-
puter, 37(10):46-54, October 2004. ISSN 0018-9162. doi: 10.1109/MC.2004.175. URL
https://doi.org/10.1109/MC.2004.175.

82 E. Gat. Three-layer Architectures. In D. Kortenkamp, P. Bonasso, and R. Murphy,
editors, Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Sys-
tems, pages 195-210. MIT Press, 1998. ISBN 0-262-61137-6. doi: 10.1.1.43.9376. URL
http://dl.acm.org/citation.cfm?id=292092.292130.

83 D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming
Language Systems, 7(1):80-112, January 1985. ISSN 0164-0925. doi: 10.1145/2363.2433.
URL http://doi.acm.org/10.1145/2363.2433.

84 S. Gerasimou, R. Calinescu, S. Shevtsov, and D. Weyns. UNDERSEA: An Exemplar
for Engineering Self-Adaptive Unmanned Underwater Vehicles. In 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, pages
83-89, Buenos Aires, Argentina, 2017. doi: 10.1109/SEAMS.2017.19. URL https://
doi.org/10.1109/SEAMS.2017.19.

85 S. Gerasimou, R. Calinescu, S. Shevtsov, and D. Weyns. UNDERSEA Artifact,
November 2019. URL https://www.hpi.uni-potsdam.de/giese/public/
selfadapt/exemplars/undersea/.

86 S. Gerasimou, R. Calinescu, S. Shevtsov, and D. Weyns. UNDERSEA Website, Novem-
ber 2019. URL https://www-users.cs.york.ac.uk/simos/UNDERSEA/.

87 D. Ghosh, R. Sharman, Raghav R., and S. Upadhyaya. Self-healing Systems - Survey
and Synthesis. Decision Support Systems, 42(4):2164-2185, January 2007. ISSN

249

250

Bibliography

88

89

90

91

92

93

94

95

96

97

98

0167-9236. doi: 10.1016/j.dss.2006.06.011. URL http://dx.doi.org/10.1016/
j.dss.2006.06.011.

T. Glazier, B. Schmerl, J. Camara, and D. Garlan. Utility Theory for Self-Adaptive
Systems. Carnegie Mellon University Technical Report CMU-ISR-17-119, 2017. URL
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/CMU-ISR-17-119
.pdf.

M. Gorlick and R. Razouk. Using Weaves for Software Construction and Analysis. In
13th International Conference on Software Engineering, pages 23-34, Austin, Texas,
USA, 1991. IEEE. ISBN 0-89791-391-4. doi: 10.1109/ICSE.1991.130620. URL http://
dl.acm.org/citation.cfm?i1d=256664.256677.

E. Grua, I. Malavolta, and P. Lago. Self-adaptation in Mobile Apps: A Systematic Lit-
erature Study. In 14th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 51-62, Montreal, Quebec, Canada, 2019. IEEE. doi:
10.1109/SEAMS.2019.00016. URL https://doi.org/10.1109/SEAMS.2019
.00016.

M. Harman. The Current State and Future of Search Based Software Engineering. In
Future of Software Engineering, pages 342-357, Minneapolis, MN, USA, 2007. IEEE.
ISBN 0-7695-2829-5. doi: 10.1109/FOSE.2007.29. URL https://doi.org/10.1109/
FOSE.2007.29.

M. Harman. The Role of Artificial Intelligence in Software Engineering. In Real-
izing AI Synergies in Software Engineering, Zurich, Switzerland, 2012. IEEE. doi:
10.1109/RAISE.2012.6227961. URL https://ieeexplore.ieee.org/document/
6227961.

M. Harman, S. Mansouri, and Y. Zhang. Search-based Software Engineering: Trends,
Techniques and Applications. ACM Computing Surveys, 45(1):11:1-11:61, December
2012. ISSN 0360-0300. doi: 10.1145/2379776.2379787. URL http://doi.acm.org/
10.1145/2379776.2379787.

J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feedback Control of Com-

puting Systems. John Wiley Sons, Inc., USA, 2004. ISBN 9780471266372. doi:
10.1002/047166880X. URL https://onlinelibrary.wiley.com/doi/book/
10.1002/047166880X.

M. Herlihy. Blockchains from a Distributed Computing Perspective. Communications
of the ACM, 62(2):78-85, January 2019. ISSN 0001-0782. doi: 10.1145/3209623. URL
https://doi.org/10.1145/3209623.

H. Hermes and J. Lasalle. Functional Analysis and Time Optimal Control, Volume 56.
Elsevier, 1969. ISBN 9780080955650. URL https://www.elsevier.com/books/
functional-analysis-and-time-optimal-control/hermes/978-0-12-
342650-5.

F. Heylighen. The Science of Self-organization and Adaptivity. In L. D. Kiel, editor,
Knowledge Management, Organizational Intelligence and Learning, and Complexity:
Volume III. EOLSS Publishers Co Ltd, 2002. ISBN 978-1-84826-913-2. URL https://
www.eolss.net/.

M. Hinchey and R. Sterritt. Self-Managing Software. Computer, 39(2): 107-109, Febru-
ary 2006. ISSN 0018-9162. doi: 10.1109/MC.2006.69. URL https://doi.org/10
.1109/MC.2006.609.

929

100

101

102

103

104

105

106

107

108

109

Bibliography | 251

P. Horn. Autonomic Computing: IBM’s Perspective on the State of

Information Technology. IBM Technical Report, November 2019. URL
https://www.semanticscholar.org/paper/Autonomic-Computing~3A-
IBM~27s-Perspective-on-the-State-Horn/ladlc619a9b3ba5a3ac597£
51c8d15011a83423b.

IBM. An Architectural Blueprint for Autonomic Computing, November 2019. URL
https://www-03.1ibm.com/autonomic/pdfs/ACBlueprintWhitePaperV?7
.pdf.

U. Iftikhar and D. Weyns. ActivFORMS: Active Formal Models for Self-adaptation. In
9th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pages 125-134, Hyderabad, India, 2014. ACM. ISBN 978-1-4503-2864-7.

doi: 10.1145/2593929.2593944. URL http://doi.acm.org/10.1145/2593929
.2593944.

U. Iftikhar, G. Ramachandran, P. Bollansée, D. Weyns, and D. Hughes. DeltaloT: A
Self-adaptive Internet of Things Exemplar. In 12th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, pages 76-82, Buenos Aires,
Argentina, 2017. IEEE. ISBN 978-1-5386-1550-8. doi: 10.1109/SEAMS.2017.21. URL
https://doi.org/10.1109/SEAMS.2017.21.

U. Iftikhar, G. Sankar Ramachandran, P. Bollansee, D. Weyns, and D. Hughes.
DeltaloT Artifact, November 2019. URL https://www.hpi.uni-potsdam.de/
giese/public/selfadapt/exemplars/deltaiot/.

D. Iglesia and D. Weyns. MAPE-K Formal Templates to Rigorously Design Behav-
iors for Self-Adaptive Systems. Transactions on Autonomous and Adaptive Systems,
10(3):15:1-15:31, September 2015. ISSN 1556-4665. doi: 10.1145/2724719. URL
http://doi.acm.org/10.1145/2724719.

ISO/IEC25010. 25010 Standard, November 2019. URL https://www.iso.org/
standard/35733.html.

M. Jackson. The Meaning of Requirements. Annals of Software Engineering, 3(1): 5-21,
1997. ISSN 1573-7489. doi: 10.1023/A:1018990005598. URL https://doi.org/10
.1023/A:1018990005598.

P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A. Metzger, and G. Estrada. Fuzzy
self-learning controllers for elasticity management in dynamic cloud architectures.

In 12th International ACM SIGSOFT Conference on Quality of Software Architec-
tures, pages 70-79, Venice, Italy, 2016. doi: 10.1109/Q0SA.2016.13. URL https://
ieeexplore.ieee.org/document/7515437.

P. Jamshidi, J. Camara, B. Schmerl, C. Kéestner, and D. Garlan. Machine Learning
Meets Quantitative Planning: Enabling Self-Adaptation in Autonomous Robots. In 14th
International Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, pages 39-50, Montreal, Quebec Canada, 2019. doi: 10.1109/SEAMS.2019.00015.
URL https://dl.acm.org/doi/10.1109/SEAMS.2019.00015.

P. Janert. Feedback Control for Computer Systems: Introducing Control Theory to
Enterprise Programmers. O’Reilly, 2013. ISBN 9781449361693. URL http://shop
.oreilly.com/product/0636920028970.do.

252

Bibliography

110

111

112

113

114

115

116

117

118

119

120

N. Jennings, P. Faratin, A. Lomuscio, S. Parsons, M. Wooldridge, and C. Sierra.
Automated Negotiation: Prospects, Methods and Challenges. Group Decision and Nego-
tiation, 10(2):199-215, March 2001. ISSN 1572-9907. doi: 10.1023/A:1008746126376.
URL https://doi.org/10.1023/A:1008746126376.

I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the Core Ontology and Problem
in Requirements Engineering. In 2008 16th IEEE International Requirements Engi-
neering Conference, pages 71-80, Catalunya, Spain, 2008. ISBN 978-0-7695-3309-4.

doi: 10.1109/RE.2008.13. URL https://ieeexplore.ieee.org/document/
4685655.

J. Kephart and D. Chess. The Vision of Autonomic Computing. IEEE Computer,

36 (1):41-50, January 2003. ISSN 0018-9162. doi: 10.1109/MC.2003.1160055. URL
http://dx.doi.org/10.1109/MC.2003.1160055.

J. Kephart and W. Walsh. An Artificial Intelligence Perspective on Autonomic Comput-
ing Policies. In 5th IEEE International Workshop on Policies for Distributed Systems and
Networks, Yorktown Heights, NY, USA, 2004. doi: 10.1109/POLICY.2004.1309145. URL
https://ieeexplore.ieee.org/document /1309145.

N. Khakpour, C. Skandylas, G. S. Nariman, and D. Weyns. Towards Secure
Architecture-Based Adaptations. In 14th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, pages 114-125, Montreal, Canada,
2019. doi: 10.1109/SEAMS.2019.00023. URL https://dl.acm.org/doi/10.1109/
SEAMS.2019.00023.

G. Kiczales, J. des Rivieres, and Bobrow. D. The Art of the Metaobject Protocol. The
MIT Press. Cambridge, Massachusetts, 1991. ISBN 9780262111584. URL https://
mitpress.mit.edu/books/art-metaobject-protocol.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, Je. Loingtier, and J.
Irwin. Aspect-oriented Programming. In European Conference on Object-Oriented Pro-
gramming, pages 220-242, Jyvaskyla, Finland,, 1997. Springer. ISBN 978-3-540-69127-3.
doi: 10.1007/BFb0053381. URL https://link.springer.com/chapter/10
.1007/BFb0053381.

C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. Le Goues. Managing Uncer-

tainty in Self-adaptive Systems with Plan Reuse and Stochastic Search. In 13th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pages 40-50, Gothenburg, Sweden, 2018. ACM. ISBN 978-1-4503-5715-9.

doi: 10.1145/3194133.3194145. URL http://doi.acm.org/10.1145/3194133
.3194145.

B. Kitchenham. Procedures for Performing Systematic Reviews. Keele

University Technical Report TR/SE-0401, November 2019. URL
http://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf.

S. Kouneyv, J.O. Kephart, A. Milenkoski, and X. Zhu, editors. Self-Aware Computing
Systems. Springer, 2017. ISBN 978-3-319-47474-8. URL https://www.springer
.com/gp/book/9783319474724.

J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, 16 (11):1293-1306, 1990.
ISSN 0098-5589. doi: 10.1109/32.60317. URL https://ieeexplore.ieee.org/
document/60317.

121

122

123

124

125

126

127

128

129

130

131

Bibliography | 253

J. Kramer and J. Magee. Self-Managed Systems: An Architectural Challenge. In Future
of Software Engineering. FOSE '07, pages 259-268, Minneapolis, MN, USA, 2007.

doi: 10.1109/FOSE.2007.19. URL https://ieeexplore.ieee.org/document/
4221625,

D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang. Power and Performance
Management of Virtualized Computing Environments via Lookahead Control. Cluster
Computing, 12(1):1-15, March 2009. ISSN 1386-7857. doi: 10.1007/s10586-008-0070-y.
URL http://dx.doi.org/10.1007/s10586-008-0070-y.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic Model
Checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Computer Perfor-
mance Evaluation: Modelling Techniques and Tools, pages 200-204, London, UK, 2002.
Springer. ISBN 978-3-540-46029-9. doi: 10.5555/2944225.2944369. URL https://
link.springer.com/chapter/10.1007/3-540-46029-2_ 13.

A. Lamsweerde. Requirements Engineering: From System Goals to

UML Models to Software. Wiley, 2009. ISBN 978-0-470-01270-3. URL
https://www.wiley.com/en-us/Requirements+Engineering\~3A+From+
System+Goals+to+UML+Models+to+Software+Specifications-p-
9780470012703.

J. Leikas, R. Koivisto, and N. Gotcheva. Ethical Framework for Designing Autonomous
Intelligent Systems. Journal of Open Innovation: Technology, Market, and Complexity,
5(1), March 2019. doi: 10.3390/joitmc5010018. URL https://doi.org/10.3390/
joitmc5010018.

A. Leva. An Introduction to Systems and Control Theory for Computer Scientists

and Engineers. In 8th ACM/SPEC International Conference on Performance Engi-
neering, pages 433-436, L’Aquila, Italy, 2017. ACM. ISBN 978-1-4503-4404-3. doi:
10.1145/3030207.3053677. URL http://doi.acm.org/10.1145/3030207
.3053677.

W. Levine. The Control Handbook: Control System Applications, Second Edition. CRC
Press, 2010. ISBN 9781420073607. doi: 10.1201/b10384. URL https://doi.org/10
.1201/b10384.

H. Lim, S. Babu, J. Chase, and S Parekh. Automated Control in Cloud Computing:
Challenges and Opportunities. In Workshop on Automated Control for Datacenters
and Clouds, pages 13-18, Barcelona, Spain, 2009. ACM. ISBN 978-1-60558-585-7.

doi: 10.1145/1555271.1555275. URL http://doi.acm.org/10.1145/1555271
.1555275.

P. Maes. Computational Reflection. In K. Morik, editor, 11th German Workshop

on Artificial Intelligence, pages 251-265, Geseke, Germany, 1987. Springer. ISBN
978-3-642-73005-4. URL https://dl.acm.org/doi/proceedings/10.5555/
647607.

P. Maes. Computational Reflection. Vrije Universiteit Brussel, Belgium, 1987. URL
http://soft.vub.ac.be/Publications/1987/vub-arti-phd-87 2.pdf.
J. Magee and J. Kramer. Dynamic Structure in Software Architectures. In 4th ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages 3-14, San Fran-
cisco, California, USA, 1996. ACM. ISBN 0-89791-797-9. doi: 10.1145/239098.239104.
URL http://doi.acm.org/10.1145/239098.239104.

254 | Bibliography

132 J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software
Architectures. In 5th European Software Engineering Conference, London, UK, 1995.
Springer. ISBN 3-540-60406-5. doi: 10.1007/3-540-60406-5_12. URL http://dl.acm
.org/citation.cfm?id=645385.651497.

133 M. Maggio and H. Hoffmann. ARPE: A Tool To Build Equation Models of Computing
Systems. In 8th International Workshop on Feedback Computing, San Jose, CA, USA,
2013. USENIX Association. URL https://www.usenix.org/node/174699.

134 M. Maggio, A. Papadopoulos, A. Filieri, and H. Hoffmann. Automated Control of
Multiple Software Goals Using Multiple Actuators. In 11th Joint Meeting on Founda-
tions of Software Engineering, pages 373-384, Paderborn, Germany, 2017. ACM. ISBN
978-1-4503-5105-8. doi: 10.1145/3106237.3106247. URL http://doi.acm.org/10
.1145/3106237.3106247.

135 M. Maggio, A. V. Papadopoulos, A. Filieri, and H. Hoffmann. Self-Adaptive Video
Encoder: Comparison of Multiple Adaptation Strategies Made Simple. In 2017
IEEE/ACM 12th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 123-128, Buenos Aires, Argentina, 2017. doi:
10.1109/SEAMS.2017.16. URL https://ieeexplore.ieee.org/document/
7968140.

136 M. Maggio, A. Vittorio Papadopoulos, A. Filieri, and H. Hoffmann. Self-Adaptive Video
Encoder Artifact, November 2019. URL https://www.hpi.uni-potsdam.de/
giese/public/selfadapt/exemplars/self-adaptive-video-encoder/.

137 S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns. A Classification Frame-
work of Uncertainty in Architecture-Based Self-Adaptive Systems with Mul-
tiple Quality Requirements. In I. Mistrik, N. Ali, R. Kazman, J. Grundy,
and B. Schmerl, editors, Managing Trade-Offs in Adaptable Software Archi-
tectures, pages 45-77. Morgan Kaufmann, 2017. ISBN 978-0-12-802855-1.
doi: https://doi.org/10.1016/B978-0-12-802855-1.00003-4. URL http://www
.sciencedirect.com/science/article/pii/B9780128028551000034.

138 T. Malone, T. Malone, and K. Crowston. The Interdisciplinary Study of Coordi-
nation. ACM Computing Surveys, 26(1):87-119, March 1994. ISSN 0360-0300. doi:
10.1145/174666.174668. URL http://doi.acm.org/10.1145/174666.174668.

139 D.H. Mellor. The Facts of Causation. Routledge. International Library of Philosophy,
1995. ISBN 0-415-09779-7.

140 G. Mohay, E. Ahmed, S. Bhatia, A. Nadarajan, B. Ravindran, A. Tickle, and R.
Vijayasarathy. Detection and Mitigation of High-Rate Flooding Attacks. In S.
Raghavan and E. Dawson, editors, An Investigation into the Detection and Mitiga-
tion of Denial of Service (DoS) Attacks. Springer, 2011. ISBN 978-81-322-0276-9. doi:
10.1007/978-81-322-0277-6_5. URL https://link.springer.com/chapter/10
.1007/978-81-322-0277-6_5.

141 S. Moon, K. Lee, and D. Lee. Fuzzy Branching Temporal Logic. Transactions on Sys-
tems, Man and Cybernetics, Part B, 34(2):1045-1055, April 2004. ISSN 1083-4419. doi:
10.1109/TSMCB.2003.819485. URL http://dx.doi.org/10.1109/TSMCB.2003
.819485.

Bibliography | 255

142 G. Moreno, B. Schmerl, and D. Garlan. SWIM: An Exemplar for Evaluation and
C@bomparison of Self-adaptation Approaches for Web Applications. In 13th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 137-143, Gothenburg, Sweden, 2018. ACM. ISBN 978-1-4503-5715-9. doi:
10.1145/3194133.3194163. URL http://doi.acm.org/10.1145/3194133
.3194163.

143 G. Moreno, B. Schmerl, and D. Garlan. SWIM Artifact, November 2019. URL
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/
exemplars/swim/.

144 G. A. Moreno, J. Camara, D. Garlan, and B. Schmerl. Proactive Self-adaptation Under
Uncertainty: A Probabilistic Model Checking Approach. In Foundations of Soft-
ware Engineering, pages 1-12, Bergamo, Italy, 2015. ACM. ISBN 978-1-4503-3675-8.
doi: 10.1145/2786805.2786853. URL http://doi.acm.org/10.1145/2786805
.2786853.

145 B. Morin, O. Barais, J.M. Jezequel, F. Fleurey, and A. Solberg. Models@ Run.time
to Support Dynamic Adaptation. IEEE Computer, 42 (10):44-51, October 2009. doi:
10.1109/MC.2009.327. URL https://ieeexplore.ieee.org/document/
5280651.

146 L. Nahabedian, V. Braberman, N. D’ippolito, J. Kramer, and S. Uchitel. Dynamic
Reconfiguration of Business Processes. In International Conference on Business Process
Management, pages 35-51, Vienna, Austria, 2019. Springer. ISBN 978-3-030-26619-6.
doi: 10.1007/978-3-030-26619-6_5. URL https://link.springer.com/chapter/
10.1007/978-3-030-26619-6_5.

147 P. Norvig. Artificial Intelligence in the Software Engineering Workflow. In O?Reilly
Artificial Intelligence Conference, New York, NY, USA, 2017. URL https://www
.oreilly.com/radar/artificial-intelligence-in-the-software-
engineering-workflow/.

148 B. Nuseibeh and S. Easterbrook. Requirements Engineering: A Roadmap. In The
Future of Software Engineering, pages 35-46, Limerick, Ireland, 2000. ACM. ISBN
1-58113-253-0. doi: 10.1145/336512.336523. URL http://doi.acm.org/10.1145/
336512.336523.

149 IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and Professional
Practices. Code of Ethics, November 2019. URL https://www.computer.org/
education/code-of-ethics.

150 P. Oreizy, N. Medvidovic, and R. Taylor. Architecture-based Runtime Software Evolu-
tion. In 20th International Conference on Software Engineering, pages 177-186, Kyoto,
Japan, 1998. IEEE. ISBN 0-8186-8368-6. URL http://dl.acm.org/citation
.cfm?1d=302163.302181.

151 P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A.
Quilici, D. Rosenblum, and A. Wolf. An Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems, 14(3):54-62, May 1999. ISSN 1541-1672. doi:
10.1109/5254.769885. URL http://dx.doi.org/10.1109/5254.769885.

256

Bibliography

152

153

154

155

156

157

158

159

160

161

162

P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and K. Merchant, A.

and Salem. Adaptive Control of Virtualized Resources in Utility Computing Envi-
ronments. In 2nd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems, pages 289-302, Lisbon, Portugal, 2007. ACM. ISBN 978-1-59593-636-3. doi:
10.1145/1272996.1273026. URL http://doi.acm.org/10.1145/1272996
.1273026.

M. Parashar and S. Hariri. Autonomic Computing: An Overview. In J. Banatre, P.
Fradet, J. Giavitto, and O. Michel, editors, International Workshop on Unconventional
Programming Paradigms, pages 257-269, Le Mont Saint Michel, France, 2005. Springer.
ISBN 978-3-540-31482-0. doi: 10.1007/11527800_20. URL https://link.springer
.com/chapter/10.1007/11527800_20.

C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context Aware
Computing for The Internet of Things: A Survey. IEEE Communications

Surveys Tutorials, 16(1):414-454, First Quarter 2014. ISSN 2373-745X. doi:
10.1109/SURV.2013.042313.00197. URL https://ieeexplore.ieee.org/
document/6512846.

D. Perez-Palacin and R. Mirandola. Uncertainties in the Modeling of Self-adaptive
Systems: A Taxonomy and an Example of Availability Evaluation. In 5th ACM/SPEC
International Conference on Performance Engineering, pages 3-14, Dublin, Ireland,
2014. ACM. ISBN 978-1-4503-2733-6. doi: 10.1145/2568088.2568095. URL http://
doi.acm.org/10.1145/2568088.2568095.

PRISM. Probabilistic Symbolic Model Checker, November 2019. URL https://www
.prismmodelchecker.org/.

N. Privault. Understanding Markov Chains. Springer, 2018. ISBN 978-981-13-0658-7.
doi: https://doi.org/10.1007/978-981-13-0659-4. URL https://link.springer
.com/book/10.1007/978-981-13-0659-4#about.

M. Provoost and D. Weyns. DingNet: A Self-adaptive Internet-of-Things Exem-

plar. In 14th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, Montreal, QC, Canada, 2019. doi: 10.1109/SEAMS.2019.00033.
URL https://doi.org/10.1109/SEAMS.2019.00033.

F. Quin, D. Weyns, T. Bamelis, S. Buttar, and S. Michiels. Efficient Analysis of Large
Adaptation Spaces in Self-adaptive Systems Using Machine Learning. In 14th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 1-12, Montreal, Quebec, Canada, 2019. IEEE. doi: 10.1109/SEAMS.2019.00011.
URL https://doi.org/10.1109/SEAMS.2019.00011.

S. V. Raghavan and E. Dawson. An Investigation into the Detection and Mitigation of
Denial of Service (DoS) Attacks: Critical Information Infrastructure Protection. Springer,
2011. ISBN 978-81-322-0277-6. URL https://www.springer.com/gp/book/
9788132202769.

V. Rajlich. Software Evolution and Maintenance. In Future of Software Engineer-

ing, pages 133-144, Hyderabad, India, 2014. ACM. ISBN 978-1-4503-2865-4. doi:
10.1145/2593882.2593893. URL http://doi.acm.org/10.1145/2593882
.2593893.

G. S. Ramachandran, N. Matthys, W. Daniels, W. Joosen, and D. Hughes. Building
Dynamic and Dependable Component-Based Internet-of-Things Applications with

163

164

165

166

167

168

169

170

171

172

Bibliography | 257

Dawn. In 19th International ACM SIGSOFT Symposium on Component-Based Soft-
ware Engineering, pages 97-106, Venice, Italy, 2016. doi: 10.1109/CBSE.2016.18. URL
https://ieeexplore.ieee.org/document/7497436.

A. Ramirez and B. Cheng. Design Patterns for Developing Dynamically Adaptive
Systems. In International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pages 49-58, Cape Town, South Africa, 2010. ACM. doi:
10.1145/1808984.1808990. URL https://doi.org/10.1145/1808984.1808990.
A. J. Ramirez, A. Jensen, B. Cheng, and D. Knoester. Automatically Exploring how
Uncertainty Impacts Behavior of Dynamically Adaptive Systems. In 26th I[EEE/ACM
International Conference on Automated Software Engineering, pages 568-571, Lawrence,
KS, USA, 2011. doi: 10.1109/ASE.2011.6100127. URL https://ieeexplore.ieee
.org/document/6100127.

S. Redwine and W. Riddle. Software Technology Maturation. In 8th International Con-
ference on Software Engineering, London, England, 1985. IEEE. ISBN 0-8186-0620-7.
doi: 10.5555/319568.319624. URL http://dl.acm.org/citation.cfm?
1d=319568.319624.

N. Rocco De, L. Michele, P. Rosario, and T. Francesco. A Formal Approach to Auto-
nomic Systems Programming: The SCEL Language. ACM Transactions on Autonomous
and Adaptive Systems, 9(2):7:1-7:29, July 2014. ISSN 1556-4665. doi: 10.1145/2619998.
URL http://doi.acm.org/10.1145/2619998.

R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli,
and U. Scholz. MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and
Service-Oriented Environments. In B. Cheng, R. de Lemos, H. Giese, P. Inverardi,

and J. Magee, editors, Software Engineering for Self-Adaptive Systems, pages 164-182.
Springer, 2009. ISBN 978-3-642-02161-9. doi: 10.1007/978-3-642-02161-9_9. URL
https://doi.org/10.1007/978-3-642-02161-9 9.

RUBIS. Rice University Bidding System, November 2019. URL https://www.rubis
.OwW2.0rg.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education,
2009. ISBN 978-0-13-604259-4. doi: 10.1016/j.artint.2011.01.005. URL http://aima
.cs.berkeley.edu/.

M. Salehie and L. Tahvildari. Self-adaptive Software: Landscape and Research Chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems, 4 (2):14:1-14:42, May
2009. ISSN 1556-4665. doi: 10.1145/1516533.1516538. URL http://doi.acm.org/
10.1145/1516533.1516538.

P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. Requirements-Aware
Systems: A Research Agenda for RE for Self-adaptive Systems. In 18th IEEE
International Requirements Engineering Conference, pages 95-103, Banff, Alberta,
Canada, 2010. doi: 10.1109/RE.2010.21. URL https://ieeexplore.ieee.org/
document /5636882.

B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applications. In

1st Workshop on Mobile Computing Systems and Applications, pages 85-90, Santa
Cruz, California, USA, 1994. IEEE. doi: 10.1109/WMCSA.1994.16. URL https://
ieeexplore.ieee.org/document /4624429.

258

Bibliography

173

174

175

176

177

178

179

180

181

182

183

M. Seidl. UML @ Classroom: An Introduction to Object-Oriented Modeling. Springer,
2015. ISBN 978-3-319-12742-2. doi: 10.1007/978-3-319-12742-2. URL https://www
.springer.com/gp/book/9783319127415.

M. L. Seto, L. Paull, and S. Saeedi. Introduction to Autonomy for Marine Robots.

In M. Seto, editor, Marine Robot Autonomy, pages 1-46. Springer, 2013. ISBN
978-1-4614-5659-9. doi: 10.1007/978-1-4614-5659-9_1. URL https://doi.org/10
.1007/978-1-4614-5659- 9 1.

M. Shahin, M. Ali Babar, and L. Zhu. Continuous Integration, Delivery and Deploy-
ment: A Systematic Review on Approaches, Tools, Challenges and Practices. IEEE
Access, 5:3909-3943, March 2017. ISSN 2169-3536. doi: 10.1109/ACCESS.2017.2685629.
URL https://ieeexplore.ieee.org/abstract/document/7884954.

S. Shevtsov and D. Weyns. Keep It SIMPLEX: Satisfying Multiple Goals with Guar-
antees in Control-based Self-adaptive Systems. In 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 229-241, Seattle, WA, USA,
2016. ACM. ISBN 978-1-4503-4218-6. doi: 10.1145/2950290.2950301. URL http://
doi.acm.org/10.1145/2950290.2950301.

S. Shevtsov, U. Iftikhar, and D. Weyns. SimCA vs ActivFORMS: Comparing Control-
and Architecture-based Adaptation on the TAS Exemplar. In International Workshop
on Control Theory for Software Engineering, pages 1-8, Bergamo, Italy, 2015. ACM.
ISBN 978-1-4503-3814-1. doi: 10.1145/2804337.2804338. URL http://doi.acm
.0org/10.1145/2804337.2804338.

S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio. Control-Theoretical Software
Adaptation: A Systematic Literature Review. IEEE Transactions on Software Engineer-
ing, 44(8):784-810, Augustus 2018. ISSN 0098-5589. doi: 10.1109/TSE.2017.2704579.
URL https://doi.org/10.1109/TSE.2017.2704579.

S. Shevtsov, D. Weyns, and M. Maggio. SImCA*: A Control-theoretic Approach to
Handle Uncertainty in Self-adaptive Systems with Guarantees. ACM Transactions on
Autonomous and Adaptive Systems, 13(4):17:1-17:34, July 2019. ISSN 1556-4665. doi:
10.1145/3328730. URL http://doi.acm.org/10.1145/3328730.

S. Shevtsov, D. Weyns., and M. Maggio. Self-Adaptation of Software Using Auto-
matically Generated Control-Theoretical Solutions. In Engineering Adaptive Soft-
ware Systems - Communications of NII Shonan Meetings, pages 35-55. Springer,
Kamiyamaguchi, Hayama, Miura District, Kanagawa 240-0198, Japan, 2019. doi:
10.1007/978-981-13-2185-6_2. URL https://doi.org/10.1007/978-981-13-
2185-6_2.

J. Shortle, J. Thompson, D. Gross, and C. Harris. Fundamentals of Queueing Theory,
Fifth Edition. Wiley, 2018. ISBN 9781118943526. doi: 10.1002/9781119453765. URL
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119453765.
M. Sommer, S. Tomforde, J. Hahner, and D. Auer. Learning a Dynamic
Re-combination Strategy of Forecast Techniques at Runtime. In IEEE International
Conference on Autonomic Computing, pages 261-266, Grenoble, France, 2015. doi:
10.1109/ICAC.2015.70. URL https://ieeexplore.ieee.org/document/
7266977.

V. Souza, A. Lapouchnian, W. Robinson, and J. Mylopoulos. Awareness Requirements
for Adaptive Systems. In 6th International Symposium on Software Engineering for

Bibliography | 259

Adaptive and Self-Managing Systems, pages 60-69, Waikiki, Honolulu, HI, USA, 2011.
ACM. ISBN 978-1-4503-0575-4. doi: 10.1145/1988008.1988018. URL http://doi.acm
.org/10.1145/1988008.1988018.

184 V. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos. Requirements-driven
Software Evolution. Computer Science, 28(4):311-329, November 2013. ISSN 1865-2034.
doi: 10.1007/s00450-012-0232-2. URL http://dx.doi.org/10.1007/s00450-
012-0232-2.

185 G. Tallabaci and V. E. Silva Souza. Engineering Adaptation with Zanshin: An Expe-
rience Report. In 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 93-102, San Francisco, CA, USA, 2013. IEEE.
doi: 10.1109/SEAMS.2013.6595496. URL https://ieeexplore.ieee.org/
document /65954 96.

186 G. Tesauro and J. Kephart. Utility Functions in Autonomic Systems. In First Interna-
tional Conference on Autonomic Computing, pages 70-77, New York, NY, USA, 2004.
IEEE. ISBN 0-7695-2114-2. doi: 10.1109/ICAC.2004.68. URL http://dl.acm.org/
citation.cfm?id=1078026.1078411.

187 R. Thayer and M. Dorfman. Software Requirements Engineering, 2nd Edition.
Wiley-IEEE Computer Society, 1997. ISBN 978-0-818-67738-0. URL https://
www.wiley.com/en-aw/Software+Requirements+Engineering, +2nd+
Edition-p-9780818677380.

188 H. Tijms. Stochastic Models, an Algorithmic Approach. Wiley, 1994. ISBN
978-0471951230.

189 UPPAAL. UPPAAL Tool Suite, November 2019. URL http://www.uppaal.org/.

190 H. Van Dyke Parunak, Sven A. Brueckner, and John Sauter. Digital Pheromones for
Coordination of Unmanned Vehicles. In Environments for Multi-Agent Systems, pages
246-263, New York, USA, 2005. Springer. ISBN 978-3-540-32259-7. URL https://
link.springer.com/chapter/10.1007/978-3-540-32259-7_13.

191 N. Villegas, H. Miiller, G. Tamura, L. Duchien, and R. Casallas. A Framework for
Evaluating Quality-driven Self-adaptive Software Systems. In 6th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, pages
80-89, Waikiki, Honolulu, HI, USA, 2011. ACM. ISBN 978-1-4503-0575-4. doi:
10.1145/1988008.1988020. URL http://doi.acm.org/10.1145/1988008
.1988020.

192 N. Villegas, G. Tamura, H. Miiller, L. Duchien, and R. Casallas. DYNAMICO: A Refer-
ence Model for Governing Control Objectives and Context Relevance in Self-Adaptive
Software Systems. In R. de Lemos, H. Giese, H. Miiller, and M. Shaw, editors, Soft-
ware Engineering for Self-Adaptive Systems II, pages 265-293. Springer, 2013. ISBN
978-3-642-35813-5. doi: 10.1007/978-3-642-35813-5_11. URL https://doi.org/10
.1007/978-3-642-35813-5_11.

193 T. Vogel. mRUBIS: An Exemplar for Model-based Architectural Self-healing and
Self-optimization. In 13th International Conference on Software Engineering for Adap-
tive and Self-Managing Systems, pages 101-107, Gothenburg, Sweden, 2018. ACM.
ISBN 978-1-4503-5715-9. doi: 10.1145/3194133.3194161. URL http://doi.acm
.0org/10.1145/3194133.3194161.

260 | Bibliography

194 T. Vogel. mRUBIS Artifact, November 2019. URL https://www.hpi.uni-potsdam
.de/giese/public/selfadapt/exemplars/mrubis/.

195 T. Vogel and H. Giese. Model-Driven Engineering of Self-Adaptive Software with
EUREMA. ACM Transactions on Autonomous and Adaptive Systems, 8(4):18:1-18:33,
January 2014. ISSN 1556-4665. doi: 10.1145/2555612. URL http://doi.acm.org/
10.1145/2555612.

196 T. Vogel and H. Giese. Self-Adaptive Systems Artifacts and Model Problems, November
2019. URL https://www.hpi.uni-potsdam.de/giese/public/selfadapt/
exemplars/.

197 G. Welch and G. Bishop. An Introduction to the Kalman Filter.

University of North Carolina at Chapel Hill, NC, USA, 1995. URL
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf.

198 D. Weyns. Software Engineering of Self-adaptive Systems. In S. Cha, R. Taylor, and K.
Kang, editors, Handbook of Software Engineering, pages 399-443. Springer, 2019. doi:
10.1007/978-3-030-00262-6_11. URL https://doi.org/10.1007/978-3-030-
00262-6_11.

199 D. Weyns and T. Ahmad. Claims and Evidence for Architecture-Based Self-adaptation:
A Systematic Literature Review, pages 249-265. Springer, Montpellier, France, 2013. doi:
10.1007/978-3-642-39031-9_22. URL https://link.springer.com/chapter/10
.1007/978-3-642-39031-9_22.

200 D. Weyns and R. Calinescu. Tele Assistance: A Self-adaptive Service-based System
Examplar. In 10th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pages 88-92, Florence, Italy, 2015. IEEE. URL http://dl
.acm.org/citation.cfm?id=2821357.2821373.

201 D. Weyns and R. Calinescu. TAS Artifact, November 2019. URL https://www.hpi
.uni-potsdam.de/giese/public/selfadapt/exemplars/tas/.

202 D. Weyns and U. Iftikhar. ActivFORMS: A Model-Based Approach to Engineer
Self-Adaptive Systems. arXiv 1908.11179, cs.SE, 2019. URL https://arxiv.org/
abs/1908.11179.

203 D. Weyns and M. Provoost. DingNet Website, November 2019. URL
https://people.cs.kuleuven.be/~danny.weyns/software/DingNet/
index.htm.

204 D. Weyns, A. Helleboogh, and T. Holvoet. The Packet-World: A Test Bed for Investi-
gating Situated Multi-Agent Systems. In R. Unland, M. Calisti, and M. Klusch, editors,
Software Agent-Based Applications, Platforms and Development Kits, pages 383-408.
Birkhduser, 2005. ISBN 978-3-7643-7348-1. URL https://lirias.kuleuven.be/
retrieve/5983.

205 D. Weyns, U. Iftikhar, D. de la Iglesia, and T. Ahmad. A Survey of Formal Methods
in Self-adaptive Systems. In Fifth International C* Conference on Computer Science
and Software Engineering, pages 67-79, Montreal, Quebec, Canada, 2012. ACM. ISBN
978-1-4503-1084-0. doi: 10.1145/2347583.2347592. URL http://doi.acm.org/10
.1145/2347583.2347592.

206 D. Weyns, S. Malek, and J. Andersson. FORMS: Unifying Reference Model for Formal
Specification of Distributed Self-adaptive Systems. Transactions on Autonomous and

207

208

209

210

211

212

213

214

215

216

Bibliography | 261

Adaptive Systems, 7(1):8:1-8:61, 2012. ISSN 1556-4665. doi: 10.1145/2168260.2168268.
URL http://doi.acm.org/10.1145/2168260.2168268.

D. Weyns, S. Malek, J. Andersson, and B. Schmerl. Introduction to the Special Issue on
State of the Art in Engineering Self-adaptive Systems. Journal of Systems and Software,
85(12):2675-2677, 2012. ISSN 0164-1212. doi: 10.1016/j.js5.2012.07.045. URL https://
doi.org/10.1016/j.38s.2012.07.045.

D. Weyns, U. Iftikhar, and J. Soderland. Do External Feedback Loops Improve the
Design of Self-adaptive Systems? A Controlled Experiment. In International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, San Francisco, CA,
USA, 2013. ISBN 978-1-4673-4401-2. doi: 0.1109/SEAMS.2013.6595487. URL http://
dl.acm.org/citation.cfm?id=2487336.2487341.

D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J.
Andersson, H. Giese, and K. Goschka. On Patterns for Decentralized Control in
Self-Adaptive Systems. In R. de Lemos, H. Giese, H. Miiller, and M. Shaw, editors,
Software Engineering for Self-Adaptive Systems II, pages 76-107. Springer, 2013. ISBN
978-3-642-35813-5. doi: 10.1007/978-3-642-35813-5_4. URL https://doi.org/10
.1007/978-3-642-35813-5 4.

D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi, V. Grassi, L. Grunske, P.
Inverardi, J. Jezequel, S. Malek, R. Mirandola, M. Mori, and G. Tamburrelli. Perpetual
Assurances for Self-Adaptive Systems. In R. de Lemos, D. Garlan, C. Ghezzi, and H.
Giese, editors, Software Engineering for Self-Adaptive Systems III. Assurances, pages
31-63. Springer, 2017. ISBN 978-3-319-74183-3. doi: 10.1007/978-3-319-74183-3_2. URL
https://link.springer.com/chapter/10.1007/978-3-319-74183-3 2.
D. Weyns, U. Iftikhar, D. Hughes, and N. Matthys. Applying Architecture-Based
Adaptation to Automate the Management of Internet-of-Things. In European
Conference on Software Architecture, pages 49-67, Madrid, Spain, 2018. Springer.

ISBN 978-3-030-00761-4. doi: 10.1007/978-3-030-00761-4_4. URL https://link
.springer.com/chapter/10.1007/978-3-030-00761-4_ 4.

D. Weyns, R. Calinescu, Iftikhar U., and Y. Ruan. TAS Website, November 2019. URL
https://people.cs.kuleuven.be/~danny.weyns/software/TAS/.

D. Weyns, U. Iftikhar, and G. Sankar Ramachandran. DeltaloT Website, November
2019. URL https://people.cs.kuleuven.be/~danny.weyns/software/
DeltalIoT/.

J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and J. Bruel. RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Systems. In 17th IEEE International
Requirements Engineering Conference, pages 79-88, Atlanta, Georgia, USA, 2009. IEEE.
ISBN 978-0-7695-3761-0. doi: 10.1109/RE.2009.36. URL http://dx.doi.org/10
.1109/RE.2009.36.

M. Wooldrige. An Introduction to MultiAgent Systems. Wiley, USA, 2009. ISBN
978-0-470-51946-2. URL https://www.wiley.com/en-us/An+Introduction+
to+MultiAgent+Systems\~2C+2nd+Edition-p-9780470519462.

S. Yang. Cybersecurity Threats — Can we Predict Them? In Research Features Maga-
zine: Engineering and Technology. Research Publishing International Ltd, 2018. URL
https://cdn2.researchfeatures.com/wp-content/uploads/2018/07/
Shanchieh-Jay-Yang-1.pdf.

262

Bibliography

217

218

219

220

221

E. Yuan, N. Esfahani, and S. Malek. A Systematic Survey of Self-Protecting Software
Systems. ACM Transactions on Autonomous and Adaptive Systems, 8(4):17:1-17:41,
Januari 2014. ISSN 1556-4665. doi: 10.1145/2555611. URL http://doi.acm.org/
10.1145/2555611.

J. Zhang and B. Cheng. Using Temporal Logic to Specify Adaptive Program Seman-
tics. Journal of Systems and Software, 79(10):1361-1369, 2006. ISSN 0164-1212. doi:
https://doi.org/10.1016/j.jss.2006.02.062. URL http://www.sciencedirect.com/
science/article/pii/S0164121206001397.

J. Zhang and B. Cheng. Model-based Development of Dynamically Adaptive Software.
In 28th International Conference on Software Engineering, pages 371-380, Shanghai,
China, 2006. ACM. ISBN 1-59593-375-1. doi: 10.1145/1134285.1134337. URL http://
doi.acm.org/10.1145/1134285.1134337.

T. Zhao, W. Zhang, H. Zhao, and Z. Jin. A Reinforcement Learning-Based Frame-
work for the Generation and Evolution of Adaptation Rules. In IEEE International
Conference on Autonomic Computing, pages 103-112, Columbus, OH, USA, 2017.

doi: 10.1109/ICAC.2017.47. URL https://ieeexplore.ieee.org/document/
8005338.

F. Zhou, B. Wu, and Z. Li. Deep Meta-Learning: Learning to Learn in the Concept
Space. CoRR, abs/1802.03596, 2018. URL http://arxiv.org/abs/1802.03596.

