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1

Basic Principles of Self-Adaptation and Conceptual Model

Modern software-intensive systems1 are expected to operate under uncertain conditions,
without interruption. Possible causes of uncertainties include changes in the operational
environment, dynamics in the availability of resources, and variations of user goals. Tradi-
tionally, it is the task of system operators to deal with such uncertainties. However, such
management tasks can be complex, error-prone, and expensive. The aim of self-adaptation
is to let the system collect additional data about the uncertainties during operation in order
to manage itself based on high-level goals. The system uses the additional data to resolve
uncertainties and based on its goals re-configures or adjusts itself to satisfy the changing
conditions.

Consider as an example a simple service-based health assistance system as shown in
Figure 1.1. The system takes samples of vital parameters of patients; it also enables patients
to invoke a panic button in case of an emergency. The parameters are analyzed by a medical
service that may invoke additional services to take actions when needed; for instance, a drug
service may need to notify a local pharmacy to deliver new medication to a patient. Each ser-
vice type can be realized by one of multiple service instances provided by third-party service
providers. These service instances are characterized by different quality properties, such as
failure rate and cost. Typical examples of uncertainties in this system are the patterns that
particular paths in the workflow are invoked by, which are based on the health conditions
of the users and their behavior. Other uncertainties are the available service instances, their
actual failure rates and the costs to use them. These parameters may change over time, for
instance due to the changing workloads or unexpected network failures.

Anticipating such uncertainties during system development, or letting system operators
deal with them during operation, is often difficult, inefficient, or too costly. Moreover, since
many software-intensive systems today need to be operational 24/7, the uncertainties nec-
essarily need to be resolved at runtime when the missing knowledge becomes available.
Self-adaptation is about how a system can mitigate such uncertainties autonomously or
with minimum human intervention.

The basic idea of self-adaptation is to let the system collect new data (that was miss-
ing before deployment) during operation when it becomes available. The system uses the

1 A software-intensive system is any system where software dominates to a large extent the design,
construction, deployment, operation, and evolution of the system. Some examples include mobile
embedded systems, unmanned vehicles, web service applications, wireless ad-hoc systems,
telecommunications, and Cloud systems.

An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspective,
First Edition. Danny Weyns.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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Figure 1.1 Architecture of a simple service-based health assistance system

additional data to resolve uncertainties, to reason about itself, and based on its goals to
reconfigure or adjust itself to maintain its quality requirements or, if necessary, to degrade
gracefully.

In this chapter, we explain what a self-adaptive system is. We define two basic principles
that determine the essential characteristics of self-adaptation. These principles allow us
to define the boundaries of what we mean by a self-adaptive system in this book, and to
contrast self-adaptation with other approaches that deal with changing conditions during
operation. From the two principles, we derive a conceptual model of a self-adaptive system
that defines the basic elements of such a system. The conceptual model provides a basic
vocabulary for the remainder of this book.

LEARNING OUTCOMES

● To explain the basic principles of self-adaptation.
● To understand how self-adaptation relates to other adaptation approaches.
● To describe the conceptual model of a self-adaptive system.
● To explain and illustrate the basic concepts of a self-adaptive system.
● To apply the conceptual model to a concrete self-adaptive application.

1.1 Principles of Self-Adaptation

There is no general agreement on a definition of the notion of self-adaptation. However,
there are two common interpretations of what constitutes a self-adaptive system.
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The first interpretation considers a self-adaptive system as a system that is able to adjust
its behavior in response to the perception of changes in the environment and the system
itself. The self prefix indicates that the system decides autonomously (i.e. without or with
minimal human intervention) how to adapt to accommodate changes in its context and
environment. Furthermore, a prevalent aspect of this first interpretation is the presence of
uncertainty in the environment or the domain in which the software is deployed. To deal
with these uncertainties, the self-adaptive system performs tasks that are traditionally done
by operators. Hence, the first interpretation takes the stance of the external observer and
looks at a self-adaptive system as a black box. Self-adaptation is considered as an observable
property of a system that enables it to handle changes in external conditions, availability of
resources, workloads, demands, and failures and threats.

The second interpretation contrasts traditional “internal” mechanisms that enable a sys-
tem to deal with unexpected or unwanted events, such as exceptions in programming lan-
guages and fault-tolerant protocols, with “external” mechanisms that are realized by means
of a closed feedback loop that monitors and adapts the system behavior at runtime. This
interpretation emphasizes a “disciplined split” between two distinct parts of a self-adaptive
system: one part that deals with the domain concerns and another part that deals with the
adaptation concerns. Domain concerns relate to the goals of the users for which the sys-
tem is built; adaptation concerns relate to the system itself, i.e. the way the system realizes
the user goals under changing conditions. The second interpretation takes the stance of the
engineer of the system and looks at self-adaptation from the point of view how the system
is conceived.

Hence, we introduce two complementary basic principles that determine what a
self-adaptive system is:

1. External principle: A self-adaptive system is a system that can handle changes and
uncertainties in its environment, the system itself, and its goals autonomously (i.e.
without or with minimal required human intervention).

2. Internal principle: A self-adaptive system comprises two distinct parts: the first part
interacts with the environment and is responsible for the domain concerns – i.e.
the concerns of users for which the system is built; the second part consists of a
feedback loop that interacts with the first part (and monitors its environment) and is
responsible for the adaptation concerns – i.e. concerns about the domain concerns.

Let us illustrate how the two principles of self-adaptation apply to the service-based
health assistance system. Self-adaptation would enable the system to deal with dynamics
in the types of services that are invoked by the system as well as variations in the failure
rates and costs of particular service instances. Such uncertainties may be hard to anticipate
before the system is deployed (external principle). To that end, the service-based system
could be enhanced with a feedback loop. This feedback loop tracks the paths of services
that are invoked in the workflow, as well as the failure rates of service instances and
the costs of invoking service instances that are provided by the service providers. Taking
this data into account, the feedback loop adapts the selection of service instances by the
workflow engine such that a set of adaptation concerns is achieved. For instance, services
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are selected that keep the average failure rate below a required threshold, while the cost of
using the health assistance system is minimized (internal principle).

1.2 Other Adaptation Approaches

The ability of a software-intensive system to adapt at runtime in order to achieve its goals
under changing conditions is not the exclusivity of self-adaptation, but can be realized in
other ways.

The field of autonomous systems has a long tradition of studying systems that can change
their behavior during operation in response to events that may not have been anticipated
fully. A central idea of autonomous systems is to mimic human (or animal) behavior, which
has been a source of inspiration for a very long time. The area of cybernetics founded by Nor-
bert Wiener at MIT in the mid twentieth century led to the development of various types
of machines that exposed seemingly “intelligent” behavior similar to biological systems.
Wiener’s work contributed to the foundations of various fields, including feedback control,
automation, and robotics. The interest in autonomous systems has expanded significantly
in recent years, with high-profile application domains such as autonomous vehicles. While
these applications have extreme potential, their successes so far have also been accompa-
nied by some dramatic failures, such as the accidents caused by first generation autonomous
cars. The consequences of such failures demonstrate the real technical difficulties associ-
ated with realizing truly autonomous systems.

An important sub-field of autonomous systems is multi-agent systems, which studies
the coordination of autonomous behavior of agents to solve problems that go beyond the
capabilities of single agents. This study involves architectures of autonomous agents, com-
munication and coordination mechanisms, and supporting infrastructure. An important
aspect is the representation of knowledge and its use to coordinate autonomous behavior
of agents. Self-organizing systems emphasize decentralized control. In a self-organizing sys-
tem, simple reactive agents apply local rules to adapt their interactions with other agents in
response to changing conditions in order to cooperatively realize the system goals. In such
systems, the global macroscopic behavior emerges from the local interactions of the agents.
However, emergent behavior can also appear as an unwanted side effect, for example in
the form of oscillations. Designing decentralized systems that expose the required global
behavior while avoiding unwanted emergent phenomena remains a major challenge.

Context-awareness is another traditional field that is related to self-adaptation.
Context-awareness puts the emphasis on handling relevant elements in the physical envi-
ronment as first-class citizens in system design and operation. Context-aware computing
systems are concerned with the acquisition of context (e.g. through sensors to perceive a
situation), the representation and understanding of context, and the steering of behavior
based on the recognized context (e.g. triggering actions based on the actual context).
Context-aware systems typically have a layered architecture, where a context manager
or dedicated middleware is responsible for sensing and dealing with context changes.
Self-aware computing systems contrast with context-aware computing systems in the
sense that these systems capture and learn knowledge not only about the environment
but also about themselves. This knowledge is encoded in the form of runtime models,
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which a self-aware system uses to reason at runtime, enabling it to act in accordance with
higher-level goals.

1.3 Scope of Self-Adaptation

Autonomous systems, multi-agent systems, self-organizing systems, and context-aware
systems are families of systems that apply classical approaches to deal with change at
runtime. However, these approaches do not align with the combined basic principles of
self-adaptation. In particular, none of these approaches comply with the second principle,
which makes an explicit distinction between a part of the system that handles domain
concerns and a part that handles adaptation concerns. However, the second principle
of self-adaptation can be applied to each of these approaches – i.e. these systems can be
enhanced with a feedback loop that deals with a set of adaptation concerns. This book is
concerned with self-adaptation as a property of a computing system that is compliant with
the two basic principles of self-adaptation.

Furthermore, self-adaptation can be applied at different levels of the software stack of
computing systems, from the underlying resources and low-level computing infrastructure
to middleware services and application software. The challenges of self-adaptation at these
different levels are different. For instance, the space of adaptation options of higher-level
software entities is often multi-dimensional, and software qualities and adaptation goals
usually have a complex interplay. These characteristics are less applicable to the adapta-
tion of lower-level resources, where there is often a more straightforward relation between
adaptation actions and software qualities. In this book, we consider self-adaptation applied
at different levels of the software stack of computing systems, from virtualized resources up
to application software.

1.4 Conceptual Model of a Self-Adaptive System

Starting from the two basic principles of self-adaptation, we define a conceptual model for
self-adaptive systems that describes the basic elements of such systems and the relationship
between them. The basic elements are intentionally kept abstract and general, but they are
compliant with the basic principles of self-adaptation. The conceptual model introduces
a basic vocabulary for the field of self-adaptation that we will use throughout this book.
Figure 1.2 shows the conceptual model of a self-adaptive system.

The conceptual model comprises four basic elements: environment, managed system,
feedback loop, and adaptation goals. The feedback loop together with the adaptation goals
form the managing system. We discuss the elements one by one and illustrate them for the
service-based health assistance application.

1.4.1 Environment

The environment refers to the part of the external world with which a self-adaptive system
interacts and in which the effects of the system will be observed and evaluated. The environ-
ment can include users as well as physical and virtual elements. The distinction between
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Figure 1.2 Conceptual model of a self-adaptive system

the environment and the self-adaptive system is made based on the extent of control. The
environment can be sensed and effected through sensors and effectors, respectively. How-
ever, as the environment is not under the control of the software engineer of the system,
there may be uncertainty in terms of what is sensed by the sensors or what the outcomes
will be of the effectors.
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Applied to the service-based health assistance system example, the environment includes
the patients that make use of the system; the application devices with the sensors that
measure vital parameters of patients and the panic buttons; the service providers with the
services instances they offer; and the network connections used in the system, which may
all affect the quality properties of the system.

1.4.2 Managed System

The managed system comprises the application software that realizes the functions of the
system to its users. Hence, the concerns of the managed system are concerns over the
domain, i.e. the environment of the system. Different terminology has been used to refer to
the managed system, such as managed element, system layer, core function, base-level sys-
tem, and controllable plant. In this book, we systematically use the term managed system. To
realize its functions to the users, the managed system senses and effects the environment.
To support adaptations, the managed system needs to be equipped with sensors to enable
monitoring and effectors (also called actuators) to execute adaptation actions. Safely execut-
ing adaptations requires that actions applied to the managed systems do not interfere with
the regular system activity. In general, they may affect ongoing activities of the system – for
instance, scaling a Cloud system might require bringing down a container and restarting it.

A classic approach to realizing safe adaptations is to apply adaptation actions only when a
system (or the parts that are subject to adaptation) is in a quiescent state. A quiescent state is
a state where no activity is going on in the managed system or the parts of it that are subject
to adaptation so that the system can be safely updated. Support for quiescence requires an
infrastructure to deal with messages that are invoked during adaptations; this infrastructure
also needs to handle the state of the adapted system or the relevant parts of it to ensure its
consistency before and after adaptation. Handling such messages and ensuring consistency
of state during adaptations are in general difficult problems. However, numerous infrastruc-
tures have been developed to support safe adaptations for particular settings. A well-known
example is the OSGi (Open Service Gateway Initiative) Java framework, which supports
installing, starting, stopping, and updating arbitrary components (bundles in OSGi termi-
nology) dynamically.

The managed system of the service-based health assistance system consists of a service
workflow that realizes the system functions. In particular, a medical service receives mes-
sages from patients with values of their vital parameters. The service analyzes the data and
either invokes a drug service to notify a local pharmacy to deliver new medication to the
patient or change the dose of medication, or it invokes an alarm service in case of an emer-
gency to notify medical staff to visit the patient. The alarm service can also be invoked
directly by a patient via a panic button. To support adaptation, the workflow infrastructure
offers sensors to track the relevant aspects of the system and the characteristics of service
instances (failure rate and cost). The infrastructure allows the selection and use of con-
crete instances of the different types of services that are required by the system. Finally, the
workflow infrastructure needs to provide support to change service instances in a consis-
tent manner by ensuring that a service is only removed and replaced when it is no longer
involved in any ongoing service invocation of the health assistance system.
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1.4.3 Adaptation Goals

Adaptation goals represent concerns of the managing system over the managed system;
adaptation goals relate to quality properties of the managed system. In general, four princi-
pal types of high-level adaptation goals can be distinguished: self-configuration (i.e. systems
that configure themselves automatically), self-optimization (systems that continually seek
ways to improve their performance or reduce their cost), self-healing (systems that detect,
diagnose, and repair problems resulting from bugs or failures), and self-protection (systems
that defend themselves from malicious attacks or cascading failures).

Since the system uses the adaptation goals to reason about itself during operation, the
goals need to be represented in a machine-readable format. Adaptation goals are often
expressed in terms of the uncertainty they have to deal with. Example approaches are the
specification of quality of service goals using probabilistic temporal logics that allow for
probabilistic quantification of properties, the specification of fuzzy goals whose satisfaction
is represented through fuzzy constraints, and a declarative specification of goals (in contrast
to enumeration) allowing the introduction of flexibility in the specification of goals. Adapta-
tion goals can be subject to change themselves, which is represented in Figure 1.2 by means
of the evolve interface. Adding new goals or removing goals during operation will require
updates of the managing system, and often also require updates of probes and effectors.

In the health assistance application, the system dynamically selects service instances
under changing conditions to keep the failure rate over a given period below a required
threshold (self-healing goal), while the cost is minimized (optimization goal). Stakeholders
may change the threshold value for the failure rate during operation, which may require
just a simple update of the corresponding threshold value. On the other hand, adding a
new adaptation goal, for instance to keep the average response time of invocations of the
assistance service below a required threshold, would be more invasive and would require
an evolution of the adaptation goals and the managing system.

1.4.4 Feedback Loop

The adaptation of the managed system is realized by the managing system. Different terms
are used in the literature for the concept of managing system, such as autonomic manager,
adaptation engine, reflective system, and controller. Conceptually, the managing system
realizes a feedback loop that manages the managed system. The feedback loop comprises
the adaptation logic that deals with one or more adaptation goals. To realize the adaptation
goals, the feedback loop monitors the environment and the managed system and adapts the
latter when necessary to realize the adaptation goals. With a reactive policy, the feedback
loop responds to a violation of the adaptation goals by adapting the managed system to a
new configuration that complies with the adaptation goals. With a proactive policy, the feed-
back loop tracks the behavior of the managed system and adapts the system to anticipate a
possible violation of the adaptation goals.

An important requirement of a managing system is ensuring that fail-safe operating
modes are always satisfied. When such an operating mode is detected, the managing
system can switch to a fall-back or degraded mode during operation. An example of an
operating mode that may require the managing system to switch to a fail-safe configuration



❦

❦ ❦

❦

1.4 Conceptual Model of a Self-Adaptive System 9

is the inability to find a new configuration to adapt the managed system to that achieves
the adaptation goals within the time window that is available to make an adaptation
decision. Note that instead of falling back to a fail-safe configuration in the event that the
goals cannot be achieved, the managing system may also offer a stakeholder the possibility
to decide on the action to take.

The managing system may consist of a single level that conceptually consists of one feed-
back loop with a set of adaptation goals, as shown in Figure 1.2. However, the managing
system may also have a layered structure, where each layer conceptually consists of a feed-
back loop with its own goals. In this case, each layer manages the layer beneath – i.e. layer n
manages layer n-1, and layer 1 manages the managed system. In practice, most self-adaptive
systems have a managing system that consists of just one layer. In systems where additional
layers are applied, the number of additional layers is usually limited to one or two. For
instance, a managing system may have two layers: the bottom layer may react quickly to
changes and adapts the managed system when needed, while the top layer may reason over
long term strategies and adapt the underlying layer accordingly.

The managing system can operate completely automatically without intervention of
stakeholders, or stakeholders may be involved in support for certain functions realized by
the feedback loop; this is shown in Figure 1.2 by means of the generic support interface.
We already gave an example above where a stakeholder could support the system with
handling a fail-safe situation. Another example is a managing system that detects a possible
threat to the system. Before activating a possible reconfiguration to mitigate the threat, the
managing system may check with a stakeholder whether the adaptation should be applied
or not.

The managing system can be subject to change itself, which is represented in Figure 1.2
with the evolve interface. On-the-fly changes of the managing systems are important for two
main reasons: (i) to update a feedback loop to resolve a problem or a bug (e.g. add or replace
some functionality), and (ii) to support changing adaptation goals, i.e. change or remove an
existing goal or add a new goal. The need for evolving the feedback loop model is triggered
by stakeholders either based on observations obtained from the executing system or because
stakeholders want to change the adaptation goals.

The managing system of the service-based health assistance system comprises a feedback
loop that is added to the service workflow. The task of the feedback loop is to ensure that the
adaptation goals are realized. To that end, the feedback loop monitors the system behavior
and the quality properties of service instances, and tracks that the system is not violating
the adaptation goals. For a reactive policy, the feedback loop will select alternative service
instances that ensure the adaptation goals are met in the event that goal violations are
detected. If no configuration can be found that complies with the adaptation goals within
a given time (fail-safe operating mode), the managing system may involve a stakeholder to
decide on the adaptation action to take. The feedback loop that adapts the service instances
to ensure that the adaptation goals are realized may be extended with an extra level that
adapts the underlying method that makes the adaptation decisions. For instance, this extra
level may track the quality properties of service instances over time and identify patterns.
The second layer can then use this knowledge to instruct the underlying feedback loop to
give preference to selecting particular service instances or to avoid the selection of certain
instances. For instance, services that expose a high level of failures during particular periods
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of the day may temporarily be excluded from selection to avoid harming the trustworthi-
ness of the system. As we explained above, when a new adaptation goal is added to the
system, in order to keep the average latency of invocations of the assistance service below
a required threshold, the managing system will need to be updated. For instance, the man-
aging system will need to be updated such that it can make adaptation decisions based on
three adaptation goals instead of two.

1.4.5 Conceptual Model Applied

Figure 1.3 summarizes how the the conceptual model maps to the self-adaptive
service-based health assistance system. The operator in this particular instance is
responsible for supporting the self-adaptive system with handling fail-safe conditions
(through the support interface). In this example, we do not consider the evolution of
adaptation goals and the managing system.

Environment
(Service Providers, Resources)

Service
Workflow

Workflow 
Engine

change drug

Patients

Medical 
Service change dose

Drug 
Service

Alarm
Service

trigger alarmtake 
sample 

execute

sense adapt

Feedback Loop
(Managing System)

Health Assistance System (Managed System)

Failure Rate & Cost
(Adaptation Goals)

read

sense

Operator
handle fail-safe

(support)

KEY ActorInterface Group of
elements

Component

Figure 1.3 Conceptual model applied to a self-adaptive service-based health assistance system
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1.5 A Note on Model Abstractions

It is important to note that the conceptual model for self-adaptive systems abstracts away
from distribution – i.e. the deployment of the software to hardware that is connected via a
network. Whereas a distributed self-adaptive system consists of multiple software compo-
nents that are deployed on multiple nodes connected via some network, from a conceptual
point of view such system can be represented as one managed system (that deals with the
domain concerns) and one managing system (that deals with adaptation concerns of the
managed system). The conceptual model also abstracts away from how adaptation decisions
in a self-adaptive system are made and potentially coordinated among different compo-
nents. In particular, the conceptual model is invariant to self-adaptive systems where the
adaptation functions are made by a single centralized entity or by multiple coordinating
entities in a decentralized way. In a concrete setting, the composition of the components
of a self-adaptive system, the concrete deployment of these components to hardware ele-
ments, and the degree of decentralization of the decision making of adaptation will have a
deep impact on how such self-adaptive systems are engineered.

1.6 Summary

Dealing with uncertainties in the operating conditions of a software-intensive system that
are difficult to predict is an important challenge for software engineers. Self-adaptation is
about how a system can mitigate such uncertainties.

There are two common interpretations of what constitutes a self-adaptive system. The
first interpretation considers a self-adaptive system as a system that is able to adjust its
behavior in response to changes in the environment or the system itself. The second inter-
pretation contrasts traditional internal mechanisms that enable a system to deal with unex-
pected or unwanted events with external mechanisms that are realized by means of feed-
back loops.

These interpretations lead to two complementary basic principles that determine what is
a self-adaptive system. The external principle states that a self-adaptive system can handle
change and uncertainties autonomously (or with minimal human intervention). The inter-
nal principle states that a self-adaptive system consists of two distinct parts: one part that
interacts with the environment and deals with the domain concerns and a second part that
interacts with the first part and deals with the adaptation concerns.

Other traditional approaches to deal with change at runtime include autonomous
systems, multi-agent systems, self-organizing systems, and context-aware systems. These
approaches differ from self-adaptation, in particular with respect to the second basic
principle. However, the second principle can be applied to these approaches through
adding a managing system realizing self-adaptation.

Conceptually, a self-adaptive system consists of four basic elements: environment, man-
aged system, adaptation goals, and feedback loop. The environment is external to the sys-
tem; it defines the domain concerns and is not under control of the software engineer. The
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managed system comprises the application software that realizes the domain concerns for
the users. To support adaptation, the managed system needs to provide probes and effectors
and support safe adaptations. The adaptation goals represent concerns over the managed
system, which refer to qualities of the system. The feedback loop realizes the adaptation
goals by monitoring and adapting the managed system. The feedback loop with the adap-
tation goals form the managing system. The managing system can be subject to on-the-fly
evolution, either to update some functionality of the adaptation logic or to change the adap-
tation goals.

1.7 Exercises

1.1 Conceptual model pipe and filter system: level H
Consider a pipe and filter system that has to perform a series of tasks for a user.
Different instances of the filters are offered by third parties. These filter instances
provide different quality of service in terms of processing time and service cost that
may change over time. Explain how you would make this a self-adaptive system that
ensures that the average throughput of tasks remains under a given threshold while
the cost is minimized. Draw the conceptual model that shows your solution to this
adaptation problem.

1.2 Conceptual model Znn.com news service: level H
Setting. Consider Znn.com, a news service that serves multimedia news content
to customers. Architecturally, Znn.com is set up as a Web-based client-server
system that serves clients from a pool of servers. Customers of Znn.com expect a
reasonable response time, while the system owner wants to keep the cost of the
server pool within a certain operating budget. In normal operating circumstances,
the appropriate trade-offs can be made at design-time. However, from time to time,
due to highly popular events, Znn.com experiences spikes in news requests that are
not within the originally designed parameters. This means that the clients will not
receive content in a timely manner. To the clients, the site will appear to be down,
so they may not use the service anymore, resulting in lost revenue. The challenge
for self-adaptation is to enable the system to still provide content at peak times.
There are several ways to deal with this, such as serving reduced content, increasing
the number of servers serving content, and choosing to prioritize serving paying
customers.
Task. Enhance Znn.com with self-adaptation to deal with the challenge of the news
service. Identify the basic concepts of the self-adaptive system (environment, man-
aged system, feedback loop, adaptation goals) and describe the responsibilities of each
element. Draw the conceptual model that shows your solution to this adaptation
problem.
Additional material. See the Znn artifact website [53].

1.3 Conceptual model video encoder: level H
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Setting. Consider a video encoder that takes a stream of video frames (for instance
from an mp4 video) and compresses the frames such that the video stream fits a given
communication channel. While compressing frames, the encoder should maintain a
required quality of the manipulated frames compared to the original frames, which
is expressed as a similarity index. To achieve these conflicting goals, the encoder can
change three parameters for each frame: the quality of the encoding and the setting
of a sharpening filter and the setting of a noise reduction filter that are both applied
to the image. The quality parameter that relates to a compression factor for the image
has a value between 1 and 100, where 100 preserves all frame details and 1 pro-
duces the highest compression. However, the relationship between quality and size
depends on the frame content, which is difficult to predict upfront. The sharpening
filter and the noise reduction filter modify certain pixels of the imagine, for instance
to remove elements that appear after compressing the original frame. The sharpening
filter has a parameter with a value that ranges between 0 and 5, where 0 indicates no
sharpening and 5 maximum sharpening. The noise reduction filter has a parameter
that specifies the size of the applied noise reduction filter, which also varies between
0 and 5.
Task. Enhance the video encoder with self-adaptation capabilities to deal with the
conflicting goals of compressing frames and ensuring a required level of quality. Iden-
tify the basic concepts of the self-adaptive system (environment, managed system,
feedback loop, adaptation goals) and describe the responsibilities of each element.
Draw the conceptual model that shows your solution to this adaptation problem.
Additional material. See the Self-Adaptive Video Encoder artifact website [136].

1.4 Implementation feedback loop Tele-Assistance System: level D
Setting. TAS, short for Tele-Assistance System, is a Java-based artifact that supports
research and experimentation on self-adaptation. TAS simulates a health assistance
service for elderly and chronically sick people, similar to the health assistance ser-
vice used in this chapter. TAS uses a combination of sensors embedded in a wearable
device and remote third-party services from medical analysis, pharmacy and emer-
gency service providers. The TAS workflow periodically takes measurements of the
vital parameters of a patient and employs a medical service for their analysis. The
result of an analysis may trigger the invocation of a pharmacy service to deliver new
medication to the patient or to change their dose of medication, or, in a critical situa-
tion, the invocation of an alarm service that will send a medical assistance team to the
patient. The same alarm service can be invoked directly by the patient by using a panic
button on the wearable device. In practice, the TAS service will be subject to a variety
of uncertainties: services may fail, service response times may vary, or new services
may become available. Different types of adaptations can be applied to deal with these
uncertainties, such as switching to equivalent services, simultaneously invoking sev-
eral services for equivalent operations, or changing the workflow architecture.
Task. Download the source code of TAS. Read the developers guide that is part of the
artifact distribution, and prepare Eclipse to work with the artifact. Execute the TAS
artifact and get familiar with it. Now design a feedback loop that deals with service
failures. The first adaptation goal is a threshold goal that requires that the average
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number of service failures should not exceed 10% of the invocations over 100 service
invocations. The second adaptation goal is to minimize the cost for service invoca-
tions over 100 service invocations. Implement your design and test it. Evaluate your
solution and assess.
Additional material. For the TAS artifact, see [201]. The latest version of TAS can
be downloaded from the TAS website [212]. For background information about TAS,
see [200].

1.8 Bibliographic Notes

The external principle of self-adaptation is grounded in the description of what constitutes a
self-adaptive system provided in a roadmap paper on engineering self-adaptive system [50].
Y. Brun et al. complemented this description and motivated the “self” prefix indicating that
the system decides autonomously [35]. The internal principle of self-adaptation is grounded
in the pioneering work of P. Oreizy et al. that stressed the need for a systematic approach
to deal with software modification at runtime (as opposed to ad-hoc “patches”) [150]. In
their seminal work on Rainbow, D. Garlan et al. contrasted internal mechanisms to adapt
a system (for instance using exceptions) with external mechanisms that enhance a system
with an external feedback loop that is responsible for handling adaptation [81].

Back in 1948, N. Wiener published a book that coined the term “cybernetics” to refer to
self-regulating mechanisms. This work laid the theoretical foundation for several fields in
autonomous systems. M. Wooldridge provided a comprehensive and readable introduction
to the theory and practice of the field of multi-agent systems [215]. F. Heylighen reviewed
the most important concepts and principles of self-organization [97]. Based on these princi-
ples, V. Dyke Parunak et al. demonstrated how digital pheromones enable robust coordina-
tion between unmanned vehicles [190]. T. De Wolf and T. Holvoet contrast self-organization
with emergent behavior [60].

B. Schilit et al. defined the notion of context-aware computing and described different cat-
egories of context-aware applications [172]. In the context of autonomic systems, Hinchey
and Sterritt referred to self-awareness as the capability of a system to be aware of its states
and behaviors [98]. M. Parashar and S. Hariri referred to self-awareness as the ability of a
system to be aware of its operational environment [153]. P. Gandodhar et al. reported the
results of a survey on context-awarenss [79], and C. Perera et al. surveyed context-aware
computing in the area of the Internet-of-Things [154]. S. Kounev et al. defined self-aware
computing systems and outlined a taxonomy for these types of systems [119].

Several authors have provided arguments for why engineering self-adaptation at different
levels of the technology stack poses different challenges. Among these are the growing com-
plexity of the adaptation space from lower-level resources up to higher-level software [5, 36],
and the increasingly complex interplay between system qualities on the one hand and adap-
tation options at higher levels of the software stack on the other hand [72].

M. Jackson contrasted the notion of environment, which is not under the control of a
designer, and the system, which is controllable [106]. J. Kramer and J. Magee introduced the
notion of quiescence [120]. A quiescent state of a software element is a state where no activ-
ity is going on in the element so that it can be safely updated. Such a state may be reached
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spontaneously or it may need to be enforced. J. Zhang and B. Cheng created the A-LTL
specification language to specify the semantics of adaptive programs [218], underpinning
safe adaptations. The OSGi framework [2] offers a modular service platform for Java that
implements a dynamic component model that allows components (so called bundles) to be
installed, started, stopped, updated, and uninstalled without requiring a reboot.

J. Kephart and D. Chess identified the primary types of higher-level adaptation
goals [112]: self-configuration, self-optimization, self-healing, and self-protection.

M. Salehie and L. Tahvildari referred to self-adaptive software as software that embodies
a closed-loop mechanism in the form of an adaptation loop [170]. Similarly, Dobson et al.
referred to an autonomic control loop, which includes processes to collect and analyze data,
and decide and act upon the system [65]. Y. Brun et al. argued for making feedback loops
first-class entities in the design and operation of self-adaptive systems [35].

J. Camara et al. elaborated on involving humans in the feedback loop to support
different self-adaptation functions, including the decision-making process [44]. Weyns
et al. presented a set of architectural patterns for decentralizing control in self-adaptive
systems [209].

The service-based health assistance system used in this book is based on the
Tele-Assistance System (TAS) exemplar [200]. TAS offers a prototypical application
that can be used to evaluate and compare new methods, techniques, and tools for research
on self-adaptation in the domain of service-based systems. The service-based health
assistance system was originally introduced in [15].
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